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Indoor positioning is critical for a variety of services, including ride-hailing. However, existing large-scale fingerprint-
based indoor positioning systems face significant challenges due to high deployment costs, temporal instability and limited
accessibility, making them impractical for widespread use. In this paper, we propose a novel approach to indoor positioning
that leverages fingerprints only sampled outdoors, which can be collected through crowdsourcing within a ride-hailing
platform. This approach significantly reduces deployment costs, enables timely updates to the fingerprint set, and provides
unprecedented accessibility. We address three key challenges in this system, including using outdoor fingerprints to estimate
indoor position, abnormal Access Points (APs), and existence of “blackholes” where overheard APs have no fingerprint. Our
implementation, built on the DiDi ride-hailing platform, is evaluated through extensive experiments with 122 million orders
across 13 million devices in multiple cities. The results demonstrate that our system achieves a significant reduction of 4.35𝑚
in pickup position error compared to existing efforts, showcasing its potential for large-scale adoption.
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Fig. 1. Fingerprints change in three typical cities.

1 Introduction
Indoor localization is a fundamental enabling technique in various location-based applications, especially on
ride-hailing platforms where passengers always issue a pickup request indoors. Based on our two-year experience
on DiDi, a prominent ride-hailing platform akin to Uber and Lyft, over 952,000 daily travel orders (∼ 28% of the
total) are originated from indoor buildings without satellite receptions. Therefore, the platform has to locate
indoor passengers without commonly used Global Positioning System (GPS), and recommend them optimal
pickup positions to wait for drivers. Despite popular travelling services, one major obstacle in industry is to
balance the localization accuracy and deployment cost at large scale.

Status Quo and Limitations:Many recent research efforts propose indoor positioning schemes, such as WiFi
Received Signal Strength Indicator (RSSI)-based [13, 42, 45], WiFi Channel State Information (CSI)-based [39,
43, 53], ultrasound-based [7, 25, 54], vision-based [26], and visible light-based systems [23, 44]. However, these
approaches are not scalable and are often impractical due to issues like multipath effects and the strict requirement
of line-of-sight views, as we will discuss in Section 2. Consequently, industrial and commercial systems [29]
often rely on fingerprint-based approaches for large-scale indoor positioning. However, several factors limit their
practicality, including:

• High deployment costs: Many systems depend on dedicated sensors or manually collected fingerprints,
requiring service providers to perform fine-grained “site surveys” and periodic patrols to update both
physical and Radio Frequency (RF) data. Given the vast number of existing buildings, this process is
time-consuming, labor-intensive, and costly, making it impractical for large-scale indoor positioning
systems.

• Temporal instability: Fingerprints are affected by various factors, including protocol versions and device
types, which are periodically updated. Figure 1 shows that only 70% to 80% of WiFi fingerprints collected
at the beginning of a year are preserved after a year. Consequently, to maintain stability, developers must
periodically update the fingerprint set, which is costly due to the need for repeated site surveys.

• Limited accessibility: Crowdsourcing has been explored to mitigate manual effort. For example,
Lab2Wild [29] pioneered the use of Access Point (AP) locations to initialize fingerprints. They observed
that many businesses deploy APs with names related to their stores, enabling location estimation through
name matching with building floor plans. However, indoor floor plans with detailed room-level annotations
are not always accessible and can raise privacy concerns, particularly in official or residential buildings.
Moreover, accurately matching AP names to specific Point of Interests (PoIs) on floor plans is challenging,
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especially when multiple languages are involved. Relying on crowdsourced users to voluntarily upload and
correct fingerprints also demands expensive incentive programs, making it difficult to sustain large-scale,
long-term services.

Our Solution: In this paper, we propose an alternative approach that shifts the reliance on indoor-collected
fingerprints to fingerprints gathered outdoors. This transformation allows us to leverage crowdsourcing to build
the fingerprint set from outdoor trajectories, which is then used for full building-level indoor positioning. Our
approach offers several key advantages: First, by utilizing a ride-hailing platform for crowdsourced fingerprint col-
lection, we eliminate the need for labor-intensive indoor fingerprint sampling, significantly reducing deployment
costs. Second, the fingerprint set can be promptly updated as protocols and devices change, ensuring continued
accuracy over time. Lastly, this method circumvents the need to enter restricted areas for fingerprint collection,
expanding the applicability of indoor positioning to a broader range of scenarios.
Challenges: Achieving the benefits of our approach presents several significant challenges:
• Use outdoor fingerprints to estimate indoor position: A key challenge is identifying a suitable method
to perform indoor localization using surrounding outdoor fingerprints. Since WiFi signatures measured
outdoors cannot be directly applied to indoor environments, we incorporate additional features–such as
scanning amount and building contour–into a convolutional neural network (CNN) model to estimate
indoor position.

• Abnormal APs producing unreliable fingerprints: Numerous abnormal access points can undermine
the reliability ofWiFi-based localization. For example, smartphones acting as mobile hotspots (“mobile APs”)
generate fingerprints that span wide areas due to their mobility. Furthermore, some APs can permanently
relocate (“migrant APs”), while others may share the same Basic Service Set Identifier (BSSID) across
different devices (“cloned APs”). These issues can mislead users to incorrect locations, disrupting pickup
services. To address this, we need to automatically detect and classify abnormal APs, identify their types,
and correct their associated fingerprints.

• Existence of “blackholes”: Large buildings may contain indoor APs that are not detectable from outdoor
trajectories. When passengers initiate pickup requests from these locations, it is possible that none of the
APs in theWiFi scan list will have associated fingerprints. In these cases, localization relies solely on cellular
signals, which can lead to significant errors or even incorrect building identification. To resolve these
localization “blackholes”, we iteratively infer the locations of indoor APs by analyzing their co-occurrence
in indoor pickup queries. This approach allows us to leverage unfamiliar APs to generate comprehensive
and accurate indoor fingerprint anchor points, providing reliable localization accuracy even in areas with
sparse or missing fingerprints.

We conducted comprehensive experiments to evaluate the performance of our system. The experimental
results show that our system achieves a median indoor position error of 9 ∼ 14 meters when the user is near the
perimeter of a building, and a median pickup position error of 10.44 meters. This level of accuracy highlights the
potential of our system for large-scale indoor positioning, particularly in recommending optimal pickup points
for ride-hailing services when a user initiates an order indoors.
Our contributions are listed as follows:
• Novel Indoor Positioning Scheme: This paper introduces an innovative fingerprint-based indoor posi-
tioning scheme that relies on fingerprints collected outdoors and crowdsourcing. This approach eliminates
the need for costly site surveys in every building, ensures timely updates of the fingerprint set for stable
service, and offers unparalleled accessibility, as the system functions using outdoor fingerprints without
needing to enter buildings.

• Key Technical Solutions: The system incorporates three major techniques: anomaly identification,
fingerprint enhancement, and real-time localization using outdoor fingerprints, addressing the challenges
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Fig. 2. Specific cases for indoor localization using outdoor fingerprints.

of building a reliable indoor positioning system with outdoor data. These techniques provide valuable
insights for the research community focused on indoor positioning.

• Practical Deployment and Large-Scale Evaluation: The system was deployed on a ride-hailing platform
and evaluated on a large-scale dataset of 122 million travel orders across 13 million devices in multiple
cities over a two-year period. The results, based on both industrial service metrics and manual annotations,
demonstrate the robustness and reliability of the system.

2 Background and Motivation

2.1 Limitations of Existing Indoor Positioning Systems
As mobile networks evolve, location-based services (LBS) have become integral to daily life. These services often
rely on precise positioning; for example, users may request their location before receiving recommendations for
nearby restaurants. Navigation services, in turn, use this accurate location data to guide users to their destinations.
In outdoor environments, GPS provides highly accurate positioning information. However, GPS signals are

easily obstructed by buildings, making it ineffective for indoor scenarios. As a result, researchers have developed
various indoor positioning systems to address this challenge and deliver accurate location data when users
request positioning services indoors.

Existing indoor positioning systems can be categorized into several distinct approaches: fingerprint-based [5, 30],
RF-based [33, 36, 46, 50], ultrasound-based [7, 25, 54], vision-based [26], and visible light-based [23, 44]. Among
these, RF-based and ultrasound-based systems, which rely on time-difference-of-arrival (TDoA) [14], angle-of-
arrival (AoA) [48], etc., can offer high accuracy but are susceptible to multipath effects—signal distortion caused by
interference from multiple moving users–making them less effective in multi-target environments. On the other
hand, vision-based systems are limited by illumination conditions and the need for a clear line of sight, while
visible light-based systems require the deployment of landmarks and anchors in advance, adding complexity.

As a result, fingerprint-based approaches are the most widely adopted, particularly in large-scale industrial
and commercial applications. These systems often rely on technologies such as WiFi [29], Bluetooth [17], or
Earth’s magnetism [41, 47]. However, Bluetooth devices have high mobility, and Earth’s magnetism is prone
to environmental changes, making them unstable for consistent positioning. In contrast, WiFi APs are widely
deployed and typically fixed in place, which is why many industrial systems build fingerprint-based indoor
positioning systems using existing WiFi infrastructure.
However, through our extensive investigation, we identified three major limitations, i.e., high deployment

costs, temporal instability, and limited accessibility, of existing WiFi fingerprint-based indoor localization systems,
as discussed in Section 1. Therefore, there is a need for a novel indoor positioning system that is not only scalable
and low-cost but also resilient to time-based changes.
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2.2 Our Finding: Possibility of Indoor Positioning Using Fingerprints Collected Outdoors
To address the limitations of existing systems, we propose a novel WiFi fingerprint-based indoor positioning
scheme based on a key insight: fingerprints collected outdoors can be effectively used for indoor positioning1. As
illustrated in Figure 2, the building area (shaded in gray) is surrounded by roads. In this scenario, devices on the
road can detect WiFi signals emitted from APs located inside the building. These signals can be used to build
fingerprints, with the device’s outdoor position accurately estimated using GPS. When a user inside the building
initiates a positioning request, these outdoor-collected fingerprints can help estimate the user’s indoor position.

For example, as shown in Figure 2a, WiFi signals from AP1 are detectable only at the orange dots on the outside
road, while signals from AP2 are detectable only at the blue dots. AP2’s signals cannot be detected at the orange
dots due to the distance and the signal attenuation caused by the building’s complex environment, and similar to
AP1’s signals. In this case, fingerprints can be built at both the orange and blue dots. If a user is located at the
position marked by the red star, they can detect signals from both AP1 and AP2. By leveraging the GPS positions
from fingerprints collected at the orange and blue dots, we can estimate the user’s indoor position.
Similarly, as shown in Figure 2b, it is difficult to detect signals from AP1 at the blue dots and from AP2 at

the orange dots. However, the user at the position denoted by the red star can detect both APs, enabling indoor
positioning based on the outdoor-collected fingerprints from both sets of dots.
This discovery allows us to design a new crowdsourced WiFi fingerprint-based indoor positioning system.

Fingerprint collectors detect WiFi signals from outside the building without the need to enter, building the
fingerprint set in the process. Users inside the building can then use this set for indoor positioning. This approach
offers several advantages that address previous limitations:

• Low development and maintenance costs: By relying on crowdsourcing, the system removes the need
for developers to conduct expensive site surveys.

• Prevent fingerprint set from becoming outdated: The crowdsourcing approach ensures real-time
updates of the fingerprint set, preventing it from becoming outdated.

• Unmatched accessibility: As collectors never need to enter buildings, the system can provide indoor
positioning even in buildings with restricted access, offering exceptional accessibility through the use of
outdoor fingerprints for accurate indoor positioning.

2.3 System Overview
Although our system addresses the limitations mentioned above, building a crowdsourcing fingerprint-based
indoor positioning system is not without challenges. As discussed in Section 1, we must overcome three key
challenges: (1) using outdoor fingerprints to estimate indoor positions, (2) dealing with abnormal APs that produce
unreliable fingerprints, and (3) handling the existence of “black holes” where no fingerprints are available.

To tackle these challenges, we designed our system, as shown in Figure 3, which comprises four main stages:
• Fingerprint Construction: The first step in our system is constructing a fingerprint set through crowd-
sourcing. We require outdoor trajectories, which consist of WiFi signal lists and GPS locations with an
error of less than 10 meters. These outdoor trajectories are then divided into 10𝑚 × 10𝑚 grid cells, where
we collect the average Received Signal Strength Indicator (RSSI), sampling counts, and timestamps. To
ensure a widespread and reliable WiFi localization service, we adopt an incremental updating process,
allowing the set to grow and be continuously refined over time as new fingerprints are collected. Regarding
large GPS errors, we use Kalman Filter (KF) and Hidden Markov Model (HMM) to smooth and correct the
trajectories, thereby reducing GPS positioning errors. This can improve the quality of our fingerprints and
further reduce the overall localization error of our system. When GPS may not be effective, we cannot

1We assume that a user is outdoors, if the GPS location of the user’s smartphone is available within 3 seconds after the user requests an order
query. In other cases, users are determined to be indoors.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 2, Article 66. Publication date: June 2025.



66:6 • Zhu et al.

Abnormal

APs Normal/Abnormal
Anomaly Identification

Fingerprint Augmentation
Non-fingerprint APs Augmented fingerprints

Feature maps
Indoor Localization

Candidate region

Typical
abnormal APs

WiFi fingerprint set

Fingerprint Construction

Fig. 3. System overview. Our system consists of four main phases, i.e., fingerprint construction, anomaly identification,
fingerprint augmentation, and indoor localization.

construct fingerprints due to the lack of GPS locations. We propose fingerprint augmentation (Section 4.3)
to improve localization accuracy and robustness.

• Anomaly Identification: Collected fingerprints cannot be directly applied for positioning due to abnormal
APs, such as mobile, migrant, or cloned APs, which can lead to significant localization errors. To address
this, we design a multi-autoencoder network that uses three key features—coverage area, scanning amount,
and service time—to distinguish between normal and abnormal APs. Next, we implement a GBDT-based
binary classification model to identify mobile APs and leverage co-occurrence analysis to detect migrant
and cloned APs. This stage ensures that fingerprints from abnormal APs are filtered out, as further explained
in Section 3.

• Fingerprint Augmentation: Some indoor APs are undetectable from outdoor trajectories, limiting the
effectiveness of WiFi localization services. To overcome this, we propose an augmentation algorithm that
uses a least-squares method to estimate the fingerprints of undetectable APs based on co-occurring APs.
This approach addresses the challenge of “black holes” and is detailed in Section 4.

• Indoor Localization: In this final stage, we extract multiple feature maps from WiFi measurements on
users’ smartphones and the fingerprint set. These joint features are then fed into a CNN model to estimate
the users’ indoor positions. This step addresses the challenge of using outdoor fingerprints for indoor
positioning and is discussed in Section 5.

3 Anomaly Identification
The quality of the fingerprint set is crucial for learning-based WiFi localization. Since we construct the fingerprint
set by collecting outdoor trajectories in our ride-hailing platform, there are a variety of “dirty” fingerprints that
are typically caused by numerous abnormal APs and they further impede the accuracy and usability of pickup
service, e.g., recommending a nearby building or an opposite entrance. In this section, we aim to distinguish
three major abnormal APs and correct associated disruptive fingerprints for WiFi localization.
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Fig. 4. Three typical abnormal access points. (a) A smartphone serves as the mobile hotspot and continuously travels
over multiple roads. (b) An AP permanently relocates, as it collapses in September and reappears in December. (c) An AP has
been scanned in two areas over the same period.

3.1 Typical Abnormal Access Points
Based on our long-term large-scale industrial experience of WiFi localization, we discover that there are three
typical abnormal APs which produce disruptive fingerprints and cause extreme localization errors, as show in
Figure 4.

• Mobile APs, i.e., a smartphone or a vehicle serves as the mobile hotspot to produce network access.
Such devices always travel across large areas thus their fingerprints span a wide region, as shown in
Figure 4a which exceeds 6.0𝑘𝑚2. Consequently, localization with such broad fingerprints can result in a
coarse-grained position.

• Migrant APs, i.e., a store or a company permanently move from one location to another place. As illustrated
in Figure 4b, the AP migrated 1.9𝑘𝑚 after September and we did not gather any fingerprints in new location
until December. Due to the insufficiency and short-term collection of fingerprints in the updated place, we
may incorrectly locate users in outdated areas.

• Cloned APs, i.e., different APs share the same BSSID and they simultaneously stay active. As shown in
Figure 4c, we discovered a cloned AP with one BSSID but serves two different buildings which are more
than 4𝑘𝑚 apart, thus we may locate users to an incorrect building. Possible reasons for such cloned APs
include manufactural or manual configurations.

In order to detect the abnormal APs, a naive method is to compare their fingerprint coverage areas with a preset
threshold. However, such a rule-based determination approach can hardly adapt to crowdsourcing scenarios. For
example, an AP may migrate to a nearby building which is only a few hundred meters away, or a mobile AP
transfers among multiple classrooms in different class hours. Such coverage variations require complicated rules
for practical adaptation, whereas implementing so many rules is not resilient and scalable in industry.

3.2 Design Overview
Our intuition is to automatically discover abnormal APs at large scale, without any manual efforts or ground truth
labels. Such autonomy is very valuable in industrial deployment. Thanks to the development of autoencoder, it has
shown great potential in abnormal image detection via unsupervised learning, especially when there are no clear
rules for abnormal patterns. Our anomaly detection method is based on an autoencoder framework, consisting of
three steps, i.e., feature extraction, unsupervised learning, and abnormal classification and correction.
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Fig. 5. Feature extraction process (left) and multi-autoencoder network structure (right).

In feature extraction, we transfer an AP’s fingerprints into a vector from three aspects, i.e., coverage area at
geographical view, scanning amount at request view, and service time at temporal view. We also compute and
simplify the presentation of such multi-view features with long-term fingerprints.
In unsupervised learning, we design a multi-autoencoder model to minimize the difference between the

original fingerprint features and their constructed samples. The model produces a score for each AP to quantify
its abnormality. We also resample the dataset to derive only normal APs for training.
In abnormal classification and correction, we classify the type of each abnormal AP, and correct their

associated fingerprints to reduce those extreme localization errors by abnormal APs.

3.3 Feature Extraction
We extract a feature vector 𝑥𝐴𝑃 which represents the long-term fingerprints of an access point. As shown on
the left in Figure 5, we divide the city map into equal grids (10𝑚 × 10𝑚), and figure out the center grid for each
AP based on its fingerprints. Each AP covers multiple grids, and each grid records long-term fingerprints and
conducts daily updates.

Instead of using massive fingerprints as-is, we select the most representative grids in three aspects, including
its coverage area, scanning amount, and service time.

• Coverage area.We pickup the farthest grids along four directions (east/south/west/north) as its geograph-
ical features. They describe the coarse coverage area for each AP, which is valuable to distinguish abnormal
APs.

• Scanning amount. We select top 𝑁 grids with the most number of localization requests to represent its
user visits. Such grids reflect the nearby PoIs where users frequently initiate pickup services.

• Service time. To separate migrate and clone APs at temporal view, we also pick up top 𝑁 grids with the
latest timestamp, the oldest timestamp, and the longest service duration, respectively.

In addition, the parameter 𝑁 on grid density is set as 4 based on experiments in Section 6.3. The left of Figure 5
depicts the feature construction flow, and we leverage 4 + 4 + 3 × 4 = 20 representative grids to construct a
fingerprint feature vector.

3.4 Unsupervised Learning
We propose an unsupervised learning method to discover the abnormal APs without any ground truth labels. It
utilizes a multi-autoencoder framework to learn and quantify the abnormality of crowdsourced APs.
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Fig. 6. Comparison of input (𝒙𝐴𝑃 ) and output (𝒙̂𝐴𝑃 ) for a trained multi-autoencoder model over four different APs.

Structure. As shown on the right in Figure 5, we design three autoencoders on geographical, request, and
temporal views, respectively. Each autoencoder includes an encoder to learn the feature distribution of normal
APs, and a decoder to reconstruct the feature vector for comparison with original samples. Both the encoder and
the decoder consists of three Fully Connected (FC) layers.

Objective. We aim to minimize the difference between original feature vector 𝑥𝐴𝑃 and the reconstructed one
𝑥𝐴𝑃 . Given the training datasetD𝑛 = {𝒙1, · · · , 𝒙𝒏} for 𝑛 APs without any ground truth labels, the model objective
is formulated as:

min 1
𝑛

𝑛∑︁
𝑖=1

𝑆𝑚𝑜𝑜𝑡ℎ𝐿1 ( |𝒙 𝒊 − 𝒙̂ 𝒊 |), (1)

where |·| denotes the absolute value. In addition, we compute 𝐿1 loss instead of the 𝐿2 loss which is sensitive to
outliers. The Smooth L1 loss 𝑆𝑚𝑜𝑜𝑡ℎ𝐿1 [12] is defined as follows:

𝑆𝑚𝑜𝑜𝑡ℎ𝐿1 (𝛿) =
{
0.5𝛿2, if 𝛿 < 1
𝛿 − 0.5. otherwise

(2)

Dataset resampling. Since it is difficult to derive the precise number of abnormal APs in large-scale fingerprint
set, we iteratively discover “normal” access points by resampling the dataset, thus incrementally construct the
normal AP set based on our multi-autoencoder model. Specifically, our dataset resampling mechanism trains the
model with three steps:

• Step 1: Randomly select around 10 million APs over the country to construct a primary fingerprint dataset
to train the multi-autoencoder model;

• Step 2: Compute the Smooth L1 Loss to score and rank all training samples, and select the half with lower
abnormal scores as the new dataset to re-train the model;

• Step 3: Repeat Step 2 for several times until all APs in dataset are normal.
This is based on the industrial observation that most of APs are normal, thus the remaining dataset with lowest

abnormal scores contains very few abnormal APs. In our system, we repeat the dataset resampling process for 3
times (details are shown in Section 6.3).

Visualization.With the trained model, we compute an anomaly score for each access point. To visually explain
the model’s effectiveness, we select one normal AP and three typical abnormal APs, and visualize their feature
vectors before/after our model. Figure 6 demonstrates that for a normal AP, there is little difference between the
input and output. In contrast, for abnormal APs, the disparity between input and output is substantial.
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Implementation. Our models are implemented in PyTorch. For training, we use the Adam [19] optimizer
with a learning rate of 1e-3 and a batch size of 2048. Training the model for 200 epochs allows it to learn and
adapt to the specific characteristics of our dataset, enhancing its predictive capabilities.

3.5 Anomaly Classification and Correction
There are multiple types of abnormal APs, e.g., mobile AP, migrant AP, and cloned AP, thus we need to identify
their category and conduct corresponding corrections on associated fingerprints. For example, we should remove
all fingerprints from mobile APs since it is unstable, and rename the BSSID of fingerprints from cloned APs. Such
corrections require precise anomaly classifications.

3.5.1 Mobile APs. To obtain a variety of training samples for both mobile and fixed APs in a scalable manner,
we adopt a name-filtering method to select confident samples among the crowdsourced fingerprints. The name-
filtering method is based on an interesting observation that many mobile APs such as smartphones or vehicles
share their cellular network thus the names of APs are by default associated with the device, e.g., “Alice’s iPhone”
or “Audi MMI”. We can therefore use some key words like “iPhone” or “MMI” to filter out sufficient mobile AP
samples for classification. In addition, many fixed wireless routers are also configured with SSIDs of their brand,
e.g., “TP-Link-XX” for the world’s No.1 wireless router provider. Thus we can gather sufficient mobile and fixed
AP fingerprints to train a binary classifier.

Note that such name-filtering method could only help to produce the training dataset, but relying solely on
SSID to identify mobile APs is unsuitable via crowdsourcing because of two reasons. First, a great many of users
manually modify their smartphones’ hotspot names based on personal preferences, thus it is difficult to classify
them by only SSID. Second, due to lack of permissions, 19.8% of APs in our fingerprint set are scanned with blank
SSIDs, thus those APs cannot be identified by SSID.
Based on sufficient fingerprints of mobile and fixed APs, we design a GBDT-based [11] binary classification

model, aiming to overcome the limitations of SSID filtering. There are two steps in our method, i.e., feature
extraction and model training.

• Feature extraction. We extract time-related, request-related, and signature-related features from the
crowdsourced fingerprints. We compute both maximum, minimum, mean, and standard deviation values
on each feature.

• Model training. We implement a GBDT-based binary classification model, using lightgbm [18] with the
cross-entropy loss function.

Compared to solely SSIDs, our binary classification method ensures both sufficient accuracy and higher recall
to classify mobile APs (detailed experiments in Section 6.3). In addition, all fingerprints from mobile APs are
removed from the fingerprint set for localization.

3.5.2 Migrant and Cloned APs. A significant difference between migrant and cloned APs is whether only one
AP or multiple APs with the same BSSID are active. Since we update the crowdsourced dataset everyday, we
leverage the intraday localization requests to classify migrant and cloned APs. The reason why we use requests
instead of signatures is that many migrant and cloned APs are deployed inside the building without any GPS
receptions, but they can be scanned by indoor users when they initiate pickup services.

Without GPS locations, we innovatively explore “co-occurrent” APs, i.e., APs that are simultaneously scanned
on the WiFi list when conducting localization requests, as the critical feature to classify migrant and cloned APs.
Thus for each BSSID-indexed AP, we produce its “co-occurrent” APs with the intraday pickup queries, estimate
the center geographical coordinates of each “co-occurrent” AP, and implement a DBSCAN [10] method to identify
the exact number of geographical clusters.
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Fig. 7. Augmented fingerprint construction process.

In addition, we further correct associated fingerprints from migrant and cloned APs. In case there is only one
cluster but the AP is identified as abnormal, it is regarded as a migrant AP thus we should remove its previous
fingerprints in the set and only use the latest fingerprints for localization. In case there are two or more clusters,
it is a cloned AP thus we should rename the BSSID in each cluster with a unique index.

4 Fingerprint Augmentation
Before localization, we observe that there are plenty of fingerprint “blackholes”, particularly in large buildings
where none of the APs in the WiFi scan list have associated fingerprints. In this situation, WiFi localization fails
thus users must rely on cellular signals for coarse localization which may cause extreme errors or even incorrect
buildings.

In this section, we aim to resolve localization “blackholes” by constructing fingerprints for those APs with none
or sparse fingerprints as shown in Figure 7. It consists of two steps: 1) estimate locations of APs which already
have fingerprints, and 2) iteratively infer fingerprints of unfamiliar but “co-occurrent” APs which simultaneously
appear with known APs in WiFi scan list. Below we explain the process in details.

4.1 AP Position Estimation
In [29], Tencent proposed a name-matching method to estimate APs’ positions based on APs’ names and PoIs on
floorplan. However, this method encounters several limitations during our deployment. First, not all buildings
have released their floorplans with room-level PoIs for the public, especially in official or residential buildings. It
is effort-intensive and cost-expensive for manual collection, as well as involves privacy concerns. Second, even
for those shopping malls with floorplans, a large store always deploy multiple APs to supply network access in
wide areas, whereas users are all attached to the same PoI. In addition, the name matching is usually complicated
with multiple languages.

Hence, we explore a crowdsourcing approach to estimate the locations of APs which have fingerprints.
Specifically, we use the log-distance path loss (LDPL) model [8, 22, 24] that is widely adopted to model WiFi
signal propagation, i.e.,

𝑠 = 𝑃0 − 10𝛾 log𝑑 (3)

where 𝑃0 and 𝛾 are the reference power and path loss constant of a given AP, respectively. 𝑑 is the distance
between the AP and a position, and 𝑠 is the received signal strength at that point.
To estimate the location of each AP with its fingerprints, we implement a Maximum Likelihood Estimation

(MLE) method as follows:
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• Candidate region production. We produce a candidate area around an AP’s fingerprints, and discretize
this area into 10𝑚 × 10𝑚 grid cells.

• LDPL parameters estimation. For each candidate grid 𝑖 , we estimate corresponding parameters in
Equation 3, i.e., 𝑃0, and 𝛾 . Specifically, we utilize a least-squares algorithm:

𝜃 =

[
𝑃0

−10𝛾

]
, 𝐷 =



1 𝑑𝑖1
...

...

1 𝑑𝑖 𝑗
...

...

1 𝑑𝑖 𝐽


, 𝑆 =



𝑠1
...

𝑠 𝑗
...

𝑠 𝐽


(4)

𝜃 =

[
𝑃0

−10𝛾

]
= (𝐷𝑇𝐷)−1𝐷𝑇𝑆 (5)

where 𝑗 is a fingerprint ( 𝑗 = 1, · · · , 𝐽 ) of this AP, 𝑑𝑖 𝑗 represents the distance between the 𝑖-th candidate grid
and the 𝑗-th fingerprint, and 𝑠 𝑗 is the received signal strength of this fingerprint. Finally, we estimate 𝑃0
and 𝛾 via Equation 5. Note that, if 𝐷𝑇𝐷 is not invertible, we use the gradient descent to calculate 𝜃 .

• MSE calculation. According to the estimated parameters 𝜃𝑖 and its observation 𝑆 , we compute the Mean
Squared Error (MSE) Δ as:

Δ =
1
𝐽
𝑡𝑟 {(𝐷𝜃 − 𝑆) (𝐷𝜃 − 𝑆)𝑇 } (6)

Finally, we traverse all candidate grids and find the one with minimum MSE as the position of this AP.

4.2 Unfamiliar AP Aggregation
For those unfamiliar APs without any fingerprints, we iteratively produce their indoor fingerprints based on
the known APs. Specifically, in case an unfamiliar AP co-occurrently appears with a known AP in some WiFi
scanning lists in localization requests, a fingerprint item of this non-fingerprint AP is generated as:

• Position: the coordinates of this fingerprint is denoted as the location of this co-occurrent AP nearby the
unfamiliar AP;

• Received Signal Strength Indicator (RSSI): the RSSI of this fingerprint is computed as the average value
of all signatures from this co-occurrent AP, and we further calculate its standard deviation value based on
multiple observations;

• Scanning amount: the scanning amount of this fingerprint is computed as the number of their co-occurrent
appearances in requests;

• Service time: the service time of this fingerprint is recorded as the duration between the first and latest
time of their co-occurrent appearances in the WiFi scan list.

4.3 Sparse Fingerprint Augmentation
Besides non-fingerprint APs, some APs have very sparse fingerprints that also cause severe reduction of lo-
calization accuracy. For example, if the number of an AP’s fingerprints is less than 3, the median localization
errors with this AP is significantly higher than other APs, which further increases the pickup position errors on
real-world ride-hailing platforms (details in Section 6.5).

To enhance the localization accuracy and reliability of using sparse fingerprints, we leverage their co-occurrent
APs to enrich their fingerprints like non-fingerprint AP augmentation. The only difference is that we ignore
a co-occurrent AP if its estimated position is faraway (over one hundred meters in our system) from the few
existing fingerprints of the related AP.
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Fig. 8. Localization process. It consists of candidate region production, feature map generation, and CNN-based localization.

5 Indoor Localization
In this section, we locate indoor users based on anomaly-filtered and AP-augmented WiFi fingerprint set. Our
industrial localization mechanism consists of three phases as shown in Figure 8, i.e., candidate region production,
feature map generation, and CNN-based localization.
Candidate region production. Estimating an appropriate candidate region is crucial and efficient for lo-

calization. For each AP in the WiFi scan list when users initiate a localization request, we calculate the weight
of each grid where the AP has fingerprints. Specifically, the weight includes two parts, i.e., RSSI similarity and
scanning amount. For a grid 𝑖 of an overheard AP with signal strength 𝑠 , we define the weights as:

𝑤𝑅𝑆𝑆𝐼
𝑖 = 𝑒

− (𝜇𝑖 −𝑠 )2

𝜎2
𝑖 ,𝑤𝑆𝐴

𝑖 =
ℎ𝑖 − ℎ𝑚𝑖𝑛

𝑖

ℎ𝑚𝑎𝑥
𝑖

− ℎ𝑚𝑖𝑛
𝑖

(7)

where 𝜇𝑖 and 𝜎𝑖 are the mean and standard deviation values of RSSI for that AP in grid 𝑖 . ℎ𝑖 is the scanning amount
on this grid, and ℎ𝑚𝑖𝑛

𝑖 and ℎ𝑚𝑎𝑥
𝑖 are the corresponding minimum and maximum values among all spanning grids.

In order to derive the most probable grid that the user may appear, we sum up the weights over all overheard
APs, i.e.,

𝑤𝑖 =
∑𝑛

𝑗=1 (𝑤𝑅𝑆𝑆𝐼
𝑖, 𝑗 +𝑤𝑆𝐴

𝑖,𝑗 ) (8)
where 𝑛 denotes the number of heard APs. Finally, we select the grid with the highest weight as the central grid.
We further construct a square area composed of 𝑁 × 𝑁 grids around the central grid as the candidate region
(𝑁 = 64 in our system).

Feature map generation. To derive user’s relative position towards central grid, we construct a multi-
dimensional feature map. For each grid in the candidate region, we compute two types of features for each
overheard AP–signature similarity and scanning amount. The former feature is calculated according to the left
formula of Equation 7. The other feature, scanning amount, is the scan count of an overheard AP in a grid. Next,
for each overheard AP, we calculate the features of each grid in the candidate region and further aggregate them
to construct feature maps with the size of 𝑁 × 𝑁 from the above two aspects, respectively. Finally, we stack 2𝑛
feature maps among 𝑛 heard APs and normalize them as the input of CNN model.
CNN-based localization.We propose a CNN model with the outlines of buildings collected from satellite

images to infer user’s relative position (Δ𝑥,Δ𝑦) towards the central grid. As Figure 8 shows, it is comprised of
three convolutional layers, three max-pooling layers, and two fully connected layers. The loss function implies
the distance between the predicted location and its practical location. To train the model, we implement in
PyTorch, use the Adam [19] optimizer with a learning rate of 5e-4 and a batch size of 512, and train it for 30,000
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epochs. Thanks to the large-scale crowdsourced training dataset across different scenarios and devices, the CNN
model shows the generalizability from our real-world experiments (Figure 18).

6 Large-Scale Evaluation
Fingerprint Set Construction:We crowdsourced the fingerprint set through DiDi, the most popular ride-hailing
platform in China. Specifically, DiDi collects fingerprints on the road while drivers provide rides to passengers,
enabling widespread data collection without requiring building access.
Experiment Overview:We conduct comprehensive and large-scale experiments to characterize the performance
of our system, in order to answer the following questions:

• Q1 (§ 6.2):Can our system accurately perform indoor positioning using only fingerprints collected outdoors?
• Q2 (§ 6.3 & § 6.4): Does abnormal detection and classification enhance positioning accuracy?
• Q3 (§ 6.5): Can fingerprint augmentation improve positioning accuracy?
• Q4 (§ 6.6): Is our system scalable across different mobile models?
• Q5 (§ 6.7): How does our system compare with existing indoor positioning methods?

6.1 Experimental Setup
Dedicated experiments: testing indoor positioning accuracy. To evaluate the localization accuracy of our
system, we conducted controlled experiments using seven different devices at 177 reference points across two
locations: a college building and a shopping mall. These dedicated tests aimed to assess the system’s ability to
perform accurate indoor positioning. We use the positioning error, defined as the distance between the ground
truth and the estimated position, to measure the accuracy of the indoor positioning.
Large-scale experiments: testing system performance with pickup service. In addition to the dedicated
experiments, we evaluated our system’s performance in real-world, large-scale environments. These large-scale
experiments were conducted on DiDi. We selected approximately 122 million ride-hailing orders across 13 million
devices that utilized WiFi-based pickup services over the span of two years in multiple cities. These large-scale
experiments aimed to assess the robustness and scalability of our methods, particularly focusing on abnormal AP
detection and classification, as well as fingerprint augmentation.
Since obtaining the ground truth of each user’s position in large-scale settings is challenging, we used an

industry-relevant metric called the “pickup position error.” This metric measures the distance between the
recommended pickup location and the actual pickup location. We recommend pickup position according to the
indoor position estimated by our system beside the road that is closed to the users’ location, which is an optimal
place for users boarding the vehicle. Therefore, we can recommend more suitable pickup location in case we
provide more accurate positioning. As a result, lower pickup position error indicates better positioning accuracy
of our system. The results demonstrate that our system is both practical and effective, improving the real-world
business experience for users.

6.2 Localization Accuracy
Localization in a college building. As shown in Figure 9a, we evaluated our system’s positioning accuracy at
69 reference points in a college building. For each point, approximately 100 tests were conducted using seven
smartphones from four different brands. The results reveal that points near the roads achieved higher accuracy,
with a median localization error of 9.04𝑚, compared to inner points, which exhibited a median error of 12.49𝑚.
Localization in a shopping mall2. As demonstrated in Figure 9b, we selected 108 reference points within
a shopping mall covering an area of 17,482 𝑚2. Similar to the college building tests, around 100 trials were
performed at each point using seven smartphones from four brands. The results show that reference points
2Partial dataset: https://juderer.github.io/wifiout2in
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Fig. 9. The floor plans of a college building and a shopping mall, in total 177 reference points. The bar shows the
error in estimated coordinates.
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Fig. 10. Performance across alternatives of anomaly detection in three cities.

near the roads achieved a localization error of approximately 13.94𝑚, a significant reduction of 17.32𝑚 (55.41%)
compared to the points located deeper inside the mall.

It is worth noting that some points near the roads had larger localization errors, likely due to fewer available
fingerprints in these areas. For example, as there exist trees around the college building corner, we cannot
collect fingerprints with high localization accuracy. Additionally, several intermediate points displayed acceptable
accuracy, benefiting from sufficient fingerprint coverage on both sides of their location.
Summary. These results indicate that our system achieves precise indoor positioning accuracy in practice,
leveraging only crowdsourced outdoor fingerprints, which provide a strong foundation for pickup position
recommendation services.
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Fig. 11. Performance of hyper-parameters of multi-autoencoder network.

6.3 Impact of Abnormal AP Detection
Compared with alternatives. To prove that the proposed multi-autoencoder network is a better choice for
abnormal WiFi AP detection in our system, we calculate the metrics compared with alternatives, i.e., autoen-
coder [15, 37] and Generative Adversarial Network (GAN) [2, 3], in three typical cities with different scales of
population.

As shown in Figure 10, the designed multi-autoencoder network outperforms auto-encoder network and GAN
in terms of pickup position error. Specifically, autoencoder and GAN present similar performance. Compared to
the autoencoder, our method has significant reductions of 0.74𝑚, 1.35𝑚, and 1.85𝑚 in terms of median errors in a
large city, a medium city, and a small city, respectively. Additionally, the pickup errors increase by 14.35𝑚, 9.50𝑚,
and 10.00𝑚 without detection in three cities, respectively, which indicates the necessity of abnormal detection.
Resampling. Since we have no idea how many abnormal APs there are, and we need to prepare a dataset
containing as many normal APs as possible for training a multi-autoencoder network, we propose the resampling
mechanism. To verify if resampling is helpful to find more normal APs, we calucate the metrics with different
resampling times.
As shown in Figure 11a, the median pickup position errors decrease first and then increase, and reach the

optimal value at the third resampling operation. Therefore, we prefer to resample for three times.
Abnormal threshold. To find out the best suitable abnormal threshold of the multi-autoencoder model to detect
abnormal APs, we compare the metrics at five different abnormal thresholds, i.e., the 99.5𝑡ℎ , 99𝑡ℎ , 95𝑡ℎ , 90𝑡ℎ , and
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Fig. 13. Performance of mobile AP classification in three cities.

80𝑡ℎ percentiles, respectively. The results in Figure 11b show that the pickup position errors decrease first and
then increase, and reach the optimal value when we choose the 99𝑡ℎ percentile as the abnormal threshold.
Number of key grid cells. To search the proper number of key grid cells as mentioned in Section 3.3, we
conducted experiments where 𝑁 was set to 2, 4, and 8, respectively. As depicted in Figure 11c, the pickup position
errors decrease first and then stabilize. Therefore, we prefer to choose 𝑁 = 4, ensuring both accuracy and
complexity.
Ablation study. To evaluate how much the addition of the three parts, i.e., coverage area (area), scanning amount
(amount), and service time (time), actually helps, we perform an ablation study on each feature. Figure 11d
demonstrates that using all the features provides the best performance in terms of the pickup position error.

6.4 Impact of Abnormal Classification and Correction
Effect of mobile access point correction. As a mobile binary classification model needs a threshold 𝜌 to
help to identify a mobile AP, we evaluated the model using F1 score to find the optimal threshold. As shown in
Figure 12, when 𝜌 = 0.50, the binary model provides the highest recall and F1 score, while the model reaches the
highest precision if the 𝜌 = 0.90. To balance all metrics, we prefer to choose 𝜌 = 0.50.
Then, we assess experiments in three cities using 𝜌 = 0.50 to evaluate the performance of the trained binary

classification model. The results in Figure 13 show that such mobile APs result in unacceptable localization errors
due to their coarse-grained fingerprints. Using SSIDs to identify mobile APs has the limitation to improve the
performance, as it identifies a few mobile APs with fixed SSIDs. On the contrary, our method outperforms and

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 2, Article 66. Publication date: June 2025.



66:18 • Zhu et al.

Correction Removing
Fingerprints of migrant APs

0

10

20

30

40

50

Pi
ck

up
 p

os
iti

on
 e

rr
or

 (m
)

Fig. 14. Performance of migrant AP
correction.

Correction Removing
Fingerprints of cloned APs

0

10

20

30

40

50

Pi
ck

up
 p

os
iti

on
 e

rr
or

 (m
)

Fig. 15. Performance of cloned AP
correction.

achieves remarkable reductions of 22.20𝑚 (61.0%), 13.32𝑚 (54.7%), and 14.10𝑚 (56.1%) compared to using SSIDs
in terms of median pickup position error, thanks to its generalizability.
Effect of migrant access point correction. To prove the precision of identifying migrant APs, we performed
experiments to compare the performance between our method, i.e, only retaining the fingerprints near the new
location, and filtering the migrant APs directly during the localization phase. As shown in Figure 14, our method
performs in terms of the first and the third quartile of the pickup position errors compared to without migrant
APs, and the median error decreases 0.58𝑚 (4.6%). The results indicate that our identification and process of
migrant APs achieves a better performance.
Effect of cloned access point correction. Similar to evaluation of migrant APs, we also compared our method,
i.e., breaking down a cloned AP into multiple smaller aggregations of its fingerprints, versus removing cloned APs
directly during localization phase. The results in Figure 15 show that our method performs better. Specifically,
the median pickup position error of our method is 0.88𝑚 (6.3%) lower than deleting cloned APs.
Summary. These results in three cities present that the median pickup errors of our system reduce by at least
9.50𝑚 after anomaly identification. For the classification and correction of three typical abnormal APs, our system
further achieves significant reductions in terms of pickup position error compared to only filtering abnormal APs.
Therefore, anomaly identification and abnormal classification and correction effectively enhance positioning
accuracy.

6.5 Impact of Augmentation
Comparison to cellular. Based on our large-scale observations, we could not provide WiFi localization service
for approximately 0.6% of daily orders due to the absence of fingerprints from the scanned APs. Such orders rely
solely on cellular localization without WiFi fingerprint augmentation. To ensure the capacity of our augmentation
method, we compared the metrics between using augmented fingerprints and using cellular signals.
As shown in Figure 16a, our method achieves a 9.67𝑚 (44.3%) lower than cellular localization with regard to

pickup position error, which suggests that the augmented fingerprints possess the ability to provide localization
with acceptable and sufficient accuracy.
Comparison to real fingerprints. Additionally, there exist around 9.8% of daily orders where the scanned
APs include one or more non-fingerprint APs. To compare the accuracy of augmented and real fingerprints, we
perform experiments as show in Figure 16b.

The results show that with augmentation our system achieves a 0.39𝑚 (3.1%) lower pickup position error than
without augmentation. It indicates that augmented fingerprints can provide localization with accuracy that is no
worse than real fingerprints.
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Fig. 16. Performance of augmentation for non-fingerprint APs.
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Fig. 17. Performance of augmentation for sparse APs.

Augmentation for sparse APs. Since sparse APs have few fingerprints, they may provide positioning with huge
uncertainty. To verify if our augmentation method helps such sparse APs to provide more reliable positioning,
we calculate the metrics with augmentation of sparse APs in three cities, respectively.

As shown in Figure 17, our method achieves significant reductions in terms of pickup position error in three
cities compared to without augmentation when the number of fingerprints of an AP does not excced 3, 4, and 4,
respectively. Therefore, our augmentation method performs well for the orders with sparse APs.
Summary. Regarding these undetectable APs which cannot be scanned outdoors, our augmentation method
achieves better positioning accuracy compared with cellular and non-augmentation localization. In terms of
sparse APs with few fingerprints, using augmentation has a better performance of pickup position error. Hence,
fingerprint augmentation significantly improves system’s positioning accuracy.

6.6 Effect of Mainstream Phone Models
Since different models of smartphones will use different base-band chips, the WiFi signal quality, strength, etc.,
and further the fingerprint might be different among different models.
We selected twelve popular models from the top six Android mainstream brands, i.e., Huawei, Vivo, Oppo,

Xiaomi, Honor, and Samsung, and measured the pickup position errors in real-world environments. Figure 18
shows that the smartphones with Vivo X20A and Oppo R11 models exhibit the best accuracy, possibly due to
the rich fingerprints associated with these models. The results indicate our system is scalable across different
smartphone models.
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Fig. 18. Performance across twelve mainstream phone models.

6.7 Comparison with Existing Efforts
We compared the performance of our system’s pickup service with Lab2Wild [29], another industrial product by
Tencent. Our system constructs fingerprints from outdoor trajectories for indoor positioning, identifies abnormal
APs, and augments non-fingerprint or sparse AP fingerprints. Lab2Wild is a lighter-weight solution based on
two assumptions: 1) using sufficient PoIs for name-matching to estimate AP locations, and 2) leveraging a large
volume of indoor user feedback to refine initial fingerprints.

In practice, however, these assumptions do not always hold. Due to permission restrictions, 19.8% of APs in
our fingerprint set were scanned with blank SSIDs, limiting the ability to estimate their locations via SSID and
PoI information. Furthermore, less than 10% of users provide feedback after their ride-hailing trips, reducing the
effectiveness of user input for fingerprint improvement. In contrast, our system operates independently of both
PoI data and user feedback, allowing it to function more reliably across diverse environments.

To evaluate performance, we conducted experiments in a large city’s shopping mall, comparing pickup position
errors between our system and Lab2Wild. Among one month and hundreds of ride-hailing orders, the median
pickup position error for our system was 10.44𝑚, which is 4.35𝑚 (or 29.4%) lower than Lab2Wild.

These results demonstrate that our system significantly outperforms Lab2Wild, showcasing its robustness in
utilizing pervasive WiFi infrastructure without relying on PoI information or user feedback.

7 Related Work
Anomaly detection. One influential approach [34] for anomaly detection assumed that the GAN’s latent vec-
tor represents the underlying data distribution. Another notable model, called GANomaly, was introduced in
[32], aiming to learn the manifold of a large training dataset composed of normal samples and then detects
abnormal images. Researchers have also explored combining GAN-based anomaly detection with fingerprint-
based localization. For instance, researchers proposed RAD-GAN [2], an anomaly detection model for indoor
fingerprint-based localization inspired by [32]. RAD-GAN relies solely on unlabeled fingerprints and achieves
outstanding performance, surpassing methods such as OC-SVM [35].
WiFi fingerprint augmentation. To address challenges associated with non-uniform data density and envi-
ronmental specifics, the researchers presented Modellet [8, 22, 28] algorithm, utilizing virtual fingerprints to
fill data voids. In [38], Gaussian Process Regression (GPR) models were presented to augment the fingerprints
in uncharted zone with limited known data. Later, SWSM [9] proposed a multivariate GPR model to estimate
the joint distribution of all WiFi signals in a 3-D environment. Recently, [27] developed a minimal-sample WiFi
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fingerprinting localization strategy by leveraging few-shot learning to construct a robust RSSI-position correlation
model for indoor localization.
WiFi fingerprint-based localization. The category of fingerprint-based approaches is pioneered by RADAR [5],
and followed by numerous improvement algorithms [51, 52]. Initially, the researchers [6, 20, 21] calculated the
distance between fingerprints or computed the likelihood of a query fingerprint against those in the database to
locate users. With the widespread deployment of deep learning, more studies [1, 4, 31, 55] provided localization
service utilizing networks, aiming to overcome traditional limitations (like multipath, occlusions, etc.).

Recent studies shared their experience in real-world environments. In [29], the authors presented their insights
and experience utilizing pervasive third-party WiFi infrastructure to provide scalable localization service to
millions of users. Yuming Hu et al. [16] reported the lessons from 1,170 teams’ fingerprint-based indoor localization
algorithms. However, these studies rely on indoor fingerprints, which is well known that indoor fingerprint
collection is labor-intensive and time-consuming [40, 49]. In contrast, we propose a novel approach for indoor
positioning, using outdoor fingerprints collected through crowdsourcing within a ride-hailing platform.

8 Conclusion
In this paper, we present our technical insights and development experience to enable large-scale indoor local-
ization availability for pickup service at DiDi ride-hailing platform. We explore a new approach that leverages
crowdsourced outdoor fingerprints to locate indoor users, and address many practical challenges we encountered
during the real-world deployment. We hope this work can boost future attentions and industrial efforts on trans-
forming the indoor localization research into commercial services. In future work, we will focus on leveraging
transfer learning and user feedback to improve localization accuracy.
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