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Real-world Large-scale Cellular Localization for
Pickup Position Recommendation at Black-hole
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Abstract—Indoor localization availability is still sporadic in
industry, especially at the black-hole, i.e., there only exist cellular
signals, no GPS or WiFi signals. Based on our 2-year observations
at the DiDi ride-hailing platform in China, there are 68k orders
everyday created at black-hole. In this paper, we present Trans-
parentLoc, a large-scale cellular localization system for pickup
position recommendation of the DiDi platform. Specifically, we
design a CNN model for real-time localization based on a
crowdsourcing fingerprint set constructed by outdoor trajectories
and abnormal cell tower detection. Then we leverage a DeepFM
model to recommend an optimal pickup position for passengers.
We share our 2-year experience with 50 million orders across
13 million devices in 4541 cities to address practical challenges
including sparse cell towers, unbalanced user fingerprints, tem-
poral variations, and abnormal cell towers in terms of four major
service metrics, i.e., pickup position error, over-30-meters ratio,
cancel ratio, and call ratio. The large-scale evaluations show
that our system achieves a 0.54m lower median pickup position
error compared to the iOS built-in cellular localization system,
regardless of environmental changes, smartphone brands/models,
time, and cellular providers. Additionally, the over-30-meters
ratio, cancel ratio, and call ratio have significant reductions of
0.88%, 0.88%, and 5.13%, respectively.

Index Terms—Cellular Localization, Pickup Position Recom-
mendation, Ride-hailing Platform, Mobile Crowdsensing

I. INTRODUCTION

Indoor localization techniques have evolved in the past
decade alongside the growth of mobile networks, enabling
mobile applications such as indoor navigation and rescue
services to offer fine-grained, high-quality user positioning.
While Global Positioning System (GPS) is commonly used,
research efforts have explored alternatives like WiFi, Blue-
tooth, ultrasound, and visible light due to line-of-sight (LOS)
constraints with satellites [2]. However, many sites, such as
underground parking lots at airports or subway stations, lack
the necessary infrastructure, like WiFi routers or ultrasonic
speakers, to provide indoor localization services.

In this paper, we share our two-year experience providing
accurate pickup services to passengers on DiDi, a prominent
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ride-hailing platform akin to Uber and Lyft. The fundamental
service offered by ride-hailing applications is to connect
drivers with passengers, ensuring that the driver arrives at the
exact location where the passenger is waiting. This crucial
process relies on a pickup service that utilizes the passenger’s
position to recommend an optimal pickup location.

Our specific focus lies in addressing the challenges posed
by indoor environments known as “black-holes.” These lo-
cations lack access to reliable positioning technologies such
as GPS signals, pre-collected WiFi fingerprint data, and ded-
icated hardware deployment. In addition, there may lack IT
equipment such as WiFi access points in these areas, e.g.,
underground metro stations or parking structures, thus users
solely rely on cellular signals for their location awareness.
A remarkable observation is that over 68,000 daily travel
orders, accounting for approximately 2% of the total, originate
from these black-hole locations on the DiDi platform. This
emphasizes the significance of our efforts in providing efficient
pickup services to users in such challenging areas.

To accomplish this, the pickup position recommendation
system relies on estimating the passenger’s location from
cellular measurements, which proves to be a challenging task.
The basic cellular positioning method, Cell ID (CID [3]),
suffers from significant location errors, often in the range
of hundreds of meters, due to the wide coverage of cell
towers. Margolies et al. [4] leverage cellular signatures from
multiple cell towers to mitigate environmental interference.
Notably, DeepLoc [5] pioneers the use of neighboring cell
towers in training a deep learning model with geo-tagged 4G
cellular signatures as fingerprints, resulting in more accurate
and efficient user positioning compared to GPS.

Despite these advancements, large-scale deployment in in-
dustry, particularly with the emergence of the 5G New Ratio
(NR) network, poses challenges. Cell towers’ limited cover-
age and penetrability compared to network connectivity [6],
ongoing 5G infrastructure construction, and insufficient user
fingerprints near black-holes all impact localization robustness.
Furthermore, severe variations in cellular signatures, especially
with 5G, present additional obstacles to accurate localization.
In addition, there exist a small number of abnormal cell towers
with multiple clusters or impractical coverage area, which may
result in coarse-grained positions.

We developed a ubiquitous cellular localization system
called TransparentLoc, which leverages existing User Mea-
surement Data (UMD) for large-scale deployment without
the need for special hardware or fine-grained indoor fin-
gerprint collection. Instead, TransparentLoc uses large-scale
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outdoor trajectories with geo-tags to incrementally construct
the cellular fingerprint set through crowdsensing, providing
indoor/outdoor location inference even in GPS-denied ”black-
hole” areas.

To achieve accurate and scalable cellular localization at
a large scale in the industry, we addressed the following
challenges. First, we tackled the unpredictable temporal-spatial
variations in cellular signatures by proposing a cell tower aug-
mentation mechanism, which enhances signature dimensions
and periodically updates fingerprints to combat environmental
interference, device diversity, and sparse cell towers.

Second, to address the substantial storage and computation
costs of constructing country-level fingerprint sets, we intro-
duced an effective feature extraction and lightweight storage
mechanism for processing incremental crowd-sourced data.

Third, we found that bits of abnormal cell towers produce
huge confusion during localization phase, thus we utilized an
unsupervised autoencoder model to identify such abnormal
cell automatically.

Finally, we overcame the difficulty of precisely learning the
arbitrary distribution of cellular signatures and practical cor-
relations among different cell towers by adopting deep neural
models with real-time requirements. Specifically, we used a
meticulous Convolutional Neural Network (CNN) model for
cellular localization and a DeepFM model for pickup position
recommendation.

Our large-scale experiments, based on approximately 50
million ride-hailing orders across 13 million devices, demon-
strate the superiority of our cellular localization system. The
recommended pickup positions generated by TransparentLoc
achieve a 4.58% lower distance error compared to the iOS
built-in cellular localization system in the median. Addi-
tionally, our system outperforms the iOS-based system in
various service metrics, irrespective of environmental changes,
smartphone brands/models, time, and cellular providers.

Our contributions are listed as follows:
• Practical Deployment and Evaluation: We present the

culmination of two years of extensive research, where
we have designed, deployed, and evaluated a large-scale
pickup location recommendation system. This system
encompasses a vast dataset of 50 million travel orders
across 13 million devices, spanning 4,541 cities. By
sharing our practical experiences, we aim to provide
valuable insights into the real-world implementation of
such systems.

• Novel Crowdsensing Approach: We have developed and
implemented a pioneering crowdsensing approach that
eliminates the need for labor-intensive indoor fingerprint
collection. It overcomes common challenges encountered
in real-world scenarios, such as sparse tower coverage,
unbalanced fingerprints, and long-term variations. More-
over, we have explored an unsupervised mining algorithm
to eliminate negative effects of abnormal cell towers. By
employing this approach, we address the limitations of
existing techniques and offer an improved solution for
accurate cellular localization.

• New Service Metrics for Large-Scale Evaluation: To
ensure the comprehensive assessment of our system’s

(a) 4G LTE (b) 5G NR

Fig. 1: User Measurement Data (UMD) in 4G LTE and 5G NR
network, recorded by a commodity app “Network Survey [8]”.

performance in diverse environments, we explore new
service metrics specifically designed for large-scale eval-
uation. These metrics alleviate the need for dedicated
manual efforts to measure the ground truth. By leveraging
these novel metrics, we demonstrate the robustness and
reliability of our system, providing a more accurate
evaluation of its effectiveness.

The organization of the remainder is as follows. Section II
introduces the challenges in cellular localization and our cell
tower augmentation. Section III presents our system overview.
Section IV and VI introduce fingerprint set construction
and abnormal cell tower detection, respectively. Section V
presents real-time localization. Section VII introduces pickup
recommendation. Section VIII presents large-scale evaluation
results of our system. Section IX introduces related work and
Section X presents discussion. Finally, Section XI conclude
this work.

II. CELL TOWER AUGMENTATION

A. Challenges in Cellular Localization

As shown in Figure 1, current smartphones can report User
Measurement Data (UMD) in 4G Long-Term Evolution (LTE)
networks, which includes wireless channel measurements like
Reference Signal Received Power (RSRP), Received Signal
Strength Indicator (RSSI), and Reference Signal Received
Quality (RSRQ) [7]1. RSRP represents the linear average of
the received signal power of resource elements and is an im-
portant power indicator of the mobile network. A strong RSRP
reading generally indicates better channel quality, suggesting
proximity to the cell station. RSSI is the average value of
all signals, such as pilot signals, data signals, neighboring
interference signals, and noise signals, and it can be used to
compute the quality of SS-RSRP measurements. RSRQ is the
ratio of RSRP and RSSI.

1In 5G NR network, RSRP and RSRQ slightly change to Synchronization
Signal Reference Signal Received power (SS-RSRP) and Secondary Synchro-
nization Signal Reference Signal Received Quality (SS-RSRQ), respectively.
We still use RSRP and RSRQ in this paper for consistency.
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TABLE I: Proportion of the number of scanning cell towers
in both 4G and 5G networks

1 Tower 2 Towers 3 Towers >3 Towers
4G LTE 44.82% 4.83% 7.68% 42.67%
5G NR 53.48% 2.68% 5.50% 38.34%

 LTE: 37

NR: 18

100m

4G LTE

5G NR

(a) Cell towers

LTE: 3550

NR: 668

100m

4G LTE

5G NR

(b) User fingerprint
(8 hours)

Fig. 2: Deployment of 4G LTE and 5G NR networks in the
central region (2km × 2km) in Beijing. The number of 4G
cell towers are more than 2x of 5G (4G: 37, 5G: 18), and 4G
user fingerprints are more than 5x of 5G (4G: 3550, 5G: 668).

Although these channel measurement values theoretically
enable distance estimation to and from cell stations based on
wireless signal propagation models, complex wireless channel
environments, such as occlusions in urban cities, often result
in significant localization errors.

In addition to measuring connection states to the primarily
connected tower, mobile devices also record readings from
neighbouring towers, enriching cellular signatures for posi-
tioning. This technique has been adopted in state-of-the-art
academic research [4]. Intuitively, distances to neighboring cell
towers help narrow down the user’s possible area, enhancing
localization accuracy.

However, deploying a large-scale cellular localization sys-
tem at the city level presents challenges due to the sparse
deployment of cell towers, especially for the rising 5G NR
network, currently under construction in many countries2. This
hinders the accuracy and robustness of cellular localization,
limiting its usage mainly to emergency rescues. Below, we
present observations from a 2km × 2km test region over
a month and highlight three typical challenges in deploying
cellular localization in the industry.

(1) Sparse cell towers. Cell towers are sparsely deployed to
efficiently cover large areas, and there are significantly fewer
5G towers compared to 4G since the 5G infrastructure is
still in development. Figure 2a illustrates that there are more
than a double of 4G cell towers than 5G even in the central
region in Beijing. Furthermore, 5G towers have short-range
coverage (e.g., 100 ∼ 300m) and weak penetrability, resulting
in infrequent 5G signatures from neighboring towers. Based
on our analysis with 1 million travel orders, Table I shows
that almost half of the orders can only detect the connected
cell towers. Notably, 5G mobile users generally hear fewer
cell towers compared to 4G users.

2Most smartphones do not enable 4G LTE and 5G NR network connectivity
simultaneously.
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Fig. 3: Temporal variations on cellular signatures from the top
3 strongest cell towers over three weeks.

NgbTag MCC MNC ECI PCI EARFCN

PLMN-ID
eCGI 4G LTE

NgbTag MCC MNC NCI PCI NR-ARFCN

PLMN-ID
NCGI 5G NR

Fig. 4: Index construction for augmented cell towers.

(2) Unbalanced user fingerprints. The current quantity
of 4G users far exceeds that of 5G users due to mature
4G deployment and cost-effective 4G smartphones. Figure 2b
shows that there are over 5 times more 4G user fingerprints
than 5G in the same test region. This imbalance hampers
the robustness of 5G localization across diverse smartphones,
locations, and orientations.

(3) Temporal variations. Figure 3 depicts daily RSRP
signatures of the top 3 strongest cell towers in 4G and 5G
networks at a random location from Figure 2 over three
weeks. Since the measured RSRP values vary all in the
same region, capturing long-term dependency and resisting
frequent temporal variations are necessary for reliable cellular
localization. In addition, our dataset over China shows that the
RSRP measured in 5G was observed to be −77±11.40dBm,
while it was measured as −83± 11.05dBm in 4G.

(4) Abnormal cell towers. From our long-term experience
of the large-scale cellular localization service, we discover that
there are a small number of abnormal cell towers that make
positioning worse. For example, as we will see in Section V-A,
extra-wide cell towers are sometimes able to cover the entire
urban area, far beyond the coverage of normal cell towers,
which may cause huge confusion in our localization phase.

B. Augmented Cell Tower as a Primitive

We aim to identify more available cell towers via existing
mobile Application Program Interface (API), i.e., leveraging
only public measurements on commodity smartphones for
ubiquitous cellular positioning. We find that other than the
E-UTRAN Cell Global Identifier (eCGI), which consists of
the Public Land Mobile Network Identity (PLMN-ID) and E-
UTRAN Cell Identifier (ECI), there are more stable and useful
information such as PCI and EARFCN in 4G LTE network.
Similarly, in 5G NR network, we can obtain PCI and NR-
ARFCN besides the NR Cell Global Identifier (NCGI), which
includes the PLMN-ID and the NR Cell Identifier (NCI).
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TABLE II: The amount of “augmented” cell towers.

Augmented Cell Tower Unique Index Amount
w/o PCI and EARFCN/NR-ARFCN ∼ 0.04 Billion

w/o PCI ∼ 0.30 Billion
w/o EARFCN/NR-ARFCN ∼ 1.71 Billion

Ours ∼ 2.20 Billion

Specifically, in LTE network PCI stands for Physical Cell
ID, which is calculated by adding two different down link
synchronisation signals, i.e., the primary synchronisation sig-
nal (PSS) and the secondary synchronisation signal (SSS) [9],
[10]. The SSS (or PCI-group) consists of 168 sequence num-
bers: N

(1)
ID ∈ [0, 167], and the PSS (or PCI-ID) consists of

three different sequence numbers: N
(2)
ID ∈ [0, 2]. A PCI is

defined as [11]:

NPCI = 3N
(1)
ID +N

(2)
ID . (1)

In addition, the EARFCN in 4G, which is similar to NR-
ARFCN in 5G, denotes the Absolute Radio Frequency Chan-
nel Number. It is a 16 bit integer ranging from 0 to 65535,
representing the different frequency bands of each cell tower
for communication.

Thus, we adopt PCI and EARFCN (NR-ARFCN) together
served as a part of the unique index for each “augmented” cell
towers. Figure 4 provides the details of augmented cell tower
unique index construction. NgbTag indicates whether the
tower is a servicing one or a neighboring one. Table II provides
the amount of augmented cell towers with different unique
indexes. The results show that there exist approximately 2.20
billion “augmented” cell towers, leveraging both PCI and
EARFCN/NR-ARFCN, which is 55× the number of aug-
mented cell towers without the use of PCI and EARFCN/NR-
ARFCN. Specifically, two augmented cell towers may locate
at the same location, but orient to different directions (i.e.,
different sections of the tower), or transmit data at different
bands. For example, there are 39 “augmented” 5G cell towers
compared with only 18 real 5G cell towers over the example
region in Figure 2a. This indicates the effectiveness to enrich
the dimension of cellular signatures with more heard cell
towers. In addition, Android does not ensure the ECI/NCI for
neighbouring cell towers, thus our mechanism also increases
the stability of discovering neighbouring cell towers in cellular
localization.

III. SYSTEM OVERVIEW

Based on the augmented cell towers which provides suf-
ficient network connectivity, we design the TransparentLoc
system, which utilizes cellular measurements to ensure pick-
up point recommendation service for passengers staying at
“black-holes”, e.g., office buildings, shopping malls, subway
stations, and underground parking structures. This service is
crucial for ride-hailing platforms since passengers may issue
travelling orders at anytime and anywhere.

Aiming to effectively evaluate our system, we propose the
performance metrics. Because covering numerous smartphones
and buildings in all cities for industry is impractical, we design
the pickup position error, namely, the distance between recom-
mended and actual pickup positions. Additionally, we provide

Receptive region

User 
popularity

Cellular 
signature

Candidate region CNN

Outdoor

Indoor
Feature maps

Pickup 
Recommendation

(Sec VII)

Pickup 
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Candidates

DeepFM model

Cell Towers Feature vectors
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Fingerprint Set Construction (Sec IV)

Abnormal Cell Tower Detection (Sec V)

Real Time Localization (Sec VI)

Fig. 5: TransparentLoc design at DiDi ride-hailing platform.
It leverages outdoor trajectories with geo-tags to construct
the cellular fingerprint set by crowdsourcing, automatically
identify abnormal cell towers, and localizes indoor passen-
gers by only cellular measurements. It further recommends a
customized pickup position and informs both passengers and
drivers.

other metrics, including the over-30-meters ratio, cancel ratio,
call ratio, and long call ratio (see details in Section VIII).

Figure 5 shows the design overview of our system, which
consists of four major phases: fingerprint set construction
at outdoor with geo-tags, localization with CNN at in-
door/outdoor by mere one-shot cellular measurements, abnor-
mal tower detection by an unsupervised Encoder-based model,
and pick-up point recommendation to guide indoor passengers
where to take the car.

In fingerprint set construction phase, TransparentLoc par-
titions the city map into equal grid cells with the size of
50m × 50m, and produces the receptive region3 for each
cell tower by crowdsensed measurements. Meanwhile, cellular
signatures and user popularity on each grid cell are incremen-
tally updated and effectively stored in the fingerprint set, with
resilient representations to combat arbitrary noise distribution
in practice.

In abnormal cell tower detection phase, we observe that
there are a small number of abnormal cell towers which may
provide huge errors for cellular localization, thus Transpar-
entLoc identifies such abnormal cell towers based on a novel
unsupervised detection algorithm.

In localization phase, TransparentLoc produces an appro-
priate candidate region by cellular measurements from the
passenger’s mobile phone, which is a square area composed of
32×32 grid cells around the center grid cell. Then, we extract
a multi-dimensional feature map over the corresponding area.
The joint features are fed into a meticulous CNN model to
pinpoint user’s relative position toward the candidate region’s
center. Note that geo-tags are only used for model training
rather than location inference.

In pick-up recommendation phase, TransparentLoc provides
a proper pick-up point for passengers, based on their estimated
locations by cellular measurements when staying at black-
holes. Different from traditional recommendation methods, we

3The ”receptive region” refers to the geographical coverage area of a cell
tower where it provides reliable cellular signal coverage to mobile devices.
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Fig. 6: Fingerprint set collection process.

have explored a specific design with three stages during its
large-scale deployment, including pairwise sorting instead of
binary classification, customized recommendation with per-
sonal history, and a DeepFM model for feature extraction and
learning.

IV. FINGERPRINT SET CONSTRUCTION

The generalizability of the fingerprint set is crucial
for industry-deployed learning-based cellular localization. It
should cover long periods, wide areas, and various devices to
ensure accurate and robust ubiquitous localization.

At DiDi ride-hailing platform, we have constructed a
country-level fingerprint set in 4,541 large/median/small cities
in China over two years. Figure 6 illustrates the data collection
process, leveraging crowdsensing to gather trajectories from
mobile users, including accurate GPS locations (geo-tags)
and associated cellular information, comprising servicing and
neighboring base stations. Note that, the errors of geo-tags
are required to be less than 20m, which reflects the estimated
horizontal accuracy radius in meters of this location at the
68th percentile confidence level from Android system API.
Additionally, if the GPS locations with the errors that exceeds
20m, we will filter such inaccurate locations. Nevertheless,
we still have enough accurate GPS locations to construct our
fingerprint set.

Figure 7 outlines the four-step construction process of
our fingerprint set: map grid partitioning, receptive region
production, cellular signature representation, and user popu-
larity counting. We also employ a resilient and incremental
feature representation mechanism and efficiently store this vast
amount of data on the cloud.

Map grid partitioning. To gather cellular fingerprints from
crowdsourced travel trajectories with geo-tags, we virtually
divide the city map into equal grids (Figure 7a). Samples
within each grid cell are aggregated to produce specific
features, enabling us to locate users anywhere, even with fast-
moving vehicles contributing to our fingerprint collection.

Receptive region production. We observe that user mea-
surement data includes cellular signatures from both primarily-
connected and neighboring cell towers. We aggregate samples
with geo-tags for each augmented cell tower based on its
unique index (Section II-B) to calculate its receptive region at
the grid level (Figure 7b). We further adopt the Density-Based

(a) Map grid partitioning (b) Receptive region production

(c) Cellular signature (d) User popularity counting

Fig. 7: Fingerprint set construction with four steps: map grid
partitioning, receptive region production, cellular signature
representation, and user popularity counting.
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Fig. 8: Arbitrary distribution of RSRP and RSRQ signatures
heard from a 5G base station at a grid cell.

Spatial Clustering of Applications with Noise (DBSCAN)
algorithm [12] to eliminate outlier grids.

Cellular signature representation. The abundance of cellu-
lar signatures from both primarily-connected and neighboring
cell towers is essential for cellular positioning (Figure 7c).
Storing such vast data as-is incurs redundant storage and
heavy computation. Existing approaches, like NBL [4], assume
Gaussian distribution for each cell tower, computing mean and
standard deviation values for feature representation. However,
this assumption doesn’t hold in large-scale deployments where
irregular distributions of RSRP and RSRQ are common (Fig-
ure 8). To address this, we explore a bucket-based storing
mechanism [13].

After profiling all historical RSRP and RSRQ signatures in
China (Figure 9), we divide the signature range into seven
intervals with equal sample quantities. Each cell tower has
specific buckets to store the quantity of corresponding samples
based on common bucket boundaries in signatures. When any
bucket value exceeds 256, all values are halved, and we repeat
this operation until they are all below 256. Each bucket value
is stored with one byte (e.g., Byte 1 ∼ 7 in Figure 10).
Additionally, another byte (e.g., Byte 0) stores the number
of halving operations. Thus, we store cellular signatures with
arbitrary distributions as an INT64 integer for each grid cell.

To capture the latest cellular signatures, we maintain a
sliding time window of 30 days, updating bucket values for
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Fig. 9: RSRP and RSRQ signatures over China.
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Fig. 10: Bucket-based storing mechanism on cellular signa-
tures.

each cell tower daily.
User popularity counting. People are more likely to stay

at regional hot spots, i.e., Points of Interests (POIs) such as
restaurants, stores and entrances (Figure 7d). Additionally,
the user popularity varies dynamically in different date and
time, especially during festivals or some big events. Figure 11
depicts the thermal maps on user popularity in a shopping mall
over four weeks in December, and there are more passengers
in the last two weeks due to the Christmas and New Year
Festival.

In order to acquire the number of active popularity at
each grid cell, we employ two indicators which have been
widely adopted in website access statistics [14], i.e., Page
View (PV) and Unique Visitor (UV). Specifically, in terms
of user measurement data, we define PV as the total number
of samples collected at a grid cell over some time, and UV
as the number of associated users collecting the samples at
this grid over the period. Since recent visits are more valuable
than earlier ones, we incrementally update the counts with a
Gaussian time decay factor, i.e.,

hPV
j =

D∑
d=0

NPV
j,t−d · g(d), hUV

j =

D∑
d=0

NUV
j,t−d · g(d) (2)

g(d) = e−
d2

2σ2 (3)

where NPV
j,t and NPV

j,t represent PV and UV values on cell
grid j at time t, respectively. D indicates the date length for
statistic (30 days in our system), and σ is the Gaussian time
decay factor (1.33 in our system).

In sum, our fingerprint set is stored with a tree structure
in database (Figure 12). The key for each “augmented”
neighbouring cell tower is the unique index (elaborated in
Section II-B), and followed by the grid Cell ID on the map.
At each grid cell, its features (RSRP, RSRQ, PV and UV) are
all incrementally updated everyday.

V. ABNORMAL CELL TOWER DETECTION

Based on our long-term experience of the large-scale cellu-
lar localization service, we observe that there are only bits

1st week 2nd week 3rd week 4th week

Fig. 11: User popularity in a shopping mall along four weeks
in December.

 CellTower

 GridCell

 RSRP  RSRQ  PV  UV

 GridCell

 RSRP  RSRQ  PV  UV

 ...

 ...  ...

Fig. 12: Data format in fingerprint database.

of abnormal cell towers that may cause huge uncertainty
in real-time localization phase. These abnormal cell towers
are defined by their crowdsourced fingerprints. Thus, we
investigate this issue and propose a detection algorithm to
identify such abnormal cell towers.

A. Abnormal Cell Towers

As shown in Figure 13, we present some examples of abnor-
mal cell towers during the deployment of cellular localization
in DiDi ride-hailing platform. (1) Multi-cluster cell towers:
Namely, cell towers have two or more clusters. An example in
Figure 13a shows that there are three clusters in Chongqing
of this cell tower. The system may locate passengers with
huge errors due to the multiple clusters. (2) Extra-wide cell
towers: Namely, the coverage area of extra-wide cell towers
extremely exceed their actual coverage area. As illustrated in
Figure 13b, the coverage area of this tower is over 220km2,
while the coverage radius of cell towers in LTE network is less
than 10km. Consequently, localization with such extra-wide
cell towers may result in a coarse-grained position, with a
positioning error of more than 10km which is impractical.

B. Design Overview

Simple clustering algorithms, e.g., DBSCAN [12], which
can identify multi-cluster cell towers. According to our statis-
tics, the proportion of travel orders at black-hole with multi-
cluster cell towers discovered by DBSCAN4 is around 1.15%.
However, these clustering algorithms cannot accurately dis-
tinguish extra-wide cell towers. To overcome the limitations
of clustering algorithms, we propose an unsupervised autoen-
coder model to discover these abnormal cell towers.

The key idea comes from the observation that there are
much more normal cell towers than abnormal ones. The overall
framework consists of two modules, i.e., feature extraction and

4The maximum distance between two samples for one to be considered as
in the neighborhood of the other is set to 2,000 meters, while the number of
samples in a neighborhood for a point to be considered as a core point is set
to 3.
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in Chongqing

(a) A multi-cluster cell tower

in Chengdu

(b) A extra-wide cell tower

Fig. 13: Examples of abnormal cell towers. A black diamond
represents a grid cell of this tower’s receptive region. (a)
illustrates a cell tower has two far-away clusters, and (b) shows
an extra-wide cell tower that covers over 220km2.

Coverage
area

User
popularity

Signature
strength

Key grid cell selection

…

…

…
concat

Relative position computation

𝒙𝒕𝒐𝒘𝒆𝒓

Fig. 14: Process of feature extraction. Firstly, we choose
multiple key grid cells for each cell tower to represent their
coverage area, user popularity, and signature strength. Sec-
ondly, we compute relative position of each key grid cell and
then combine them in a fixed order to form a vector xtower.

unsupervised autoencoder detection, which are described as
follows.

C. Feature Extraction

We design a process to extract the fingerprint of each
cell tower as a vector xtower ∈ R56. The details of feature
extraction are shown in Figure 14.

(1) Key grid cell selection. We pick the most representative
grid cells of the receptive region for each cell tower from
three aspects, including coverage area, user popularity, and
signature strength. In terms of coverage area, we choose the
easternmost (rightward), southernmost (lower), westernmost
(leftward), and northernmost (upper) grid cells as four bound-
ary grid cells, respectively. If there are multiple grid cells on
the border, we select the middle one among them. Regarding
user popularity, we pick the top Nh

kgc hottest grid cells as key
popularity cells, which reflect the most visited places around
the cell tower. As regards signature strength, we select the top
Ns

kgc grid cells with strongest cellular signals as key signature
cells, which represent the signature distribution from the cell
tower. In our system, we choose Nh

kgc = Ns
kgc = 8.

(2) Relative position computation. We calculate the rel-
ative positions of all the selected grid cells based on the
geometric center of each cell tower. In addition, we arrange
them in a fixed order to form the feature vector xtower for
each cell tower, which will be considered as the input of the
autoencoder network below.

FC LeakyReLU ReLU BatchNorm

Fig. 15: Unsupervised autoencoder model structure. It consists
of a encoder and a decoder, i.e., Eae and Dae. xtower stands
for the feature vector of a cell tower extracted by Feature
Extraction while x̂tower means a fake vector learned by the
autoencoder model. zae represents a latent vector.

D. Unsupervised Autoencoder Detection

We propose an unsupervised scoring mechanism to identify
the abnormal cell towers, utilizing the autoencoder network
with the feature vector xtower. Note that, “unsupervised”
means that we do not need to prepare labeled samples of
“abnormal” and “normal” cell towers for the autoencoder
model training.

Structure. The structure of our unsupervised autoencoder
detection model is illustrated in Figure 15, where Eae and Dae

represent a encoder and a decoder, respectively. Based on the
input, i.e., a cell tower vector xtower, the encoder Eae learns
a latent vector zae that represents characteristic distribution of
this cell tower, while the encoder Dae generates the fake cell
tower vector x̂tower using zae.

Specifically, the encoder Eae consists of three Fully Con-
nected (FC) Layers with a LeakyReLU activate function
and a Batch Normalization (BN) [15] layer. The number of
hidden nodes in FC layers is 128, 64, and 32, respectively.
The decoder Dae is a combination of three FC layers with
LeakyReLU and ReLU activate functions, and the count of
hidden nodes in each FC layer is 64, 128, and 56, respectively.

Objective. The goal of our autoencoder model is to minimize
the distance between xtower and x̂tower. Let ϕ(·;W) be an
autoencoder network with set of weights W . Given a training
dataset Dn = {x1

tower, ...,x
n
tower}, we define the autoencoder

network objective as follows.

min
1

n

n∑
i=1

Smoothl1(
∣∣xi

tower − ϕ(xi
tower;W)

∣∣)
=
1

n

n∑
i=1

Smoothl1(
∣∣xi

tower − x̂i
tower

∣∣), (4)

where |·| denotes the absolute value. And the loss function
Smoothl1 is defined as follows.

Smoothl1(δ) =

{
0.5δ2, if δ < 1

δ − 0.5. otherwise
(5)

Considering there are abnormal cell towers, the L1 loss
function would be more robust than L2 loss function.

Abnormal scoring. For a given vector xtower ∈ R56, we
can naturally define the abnormal score sae, i.e.,

sae(xtower) = Smoothl1(|xtower − ϕ(xtower;W∗)|), (6)



8

RSRQ

PV

UV

RSRPCellular signature

N

W

Fingerprint set

Feature map

N
N

Center grid

Candidate region

Fig. 16: Candidate region production and feature map gener-
ation.

where W∗ are the network parameters of a trained autoencoder
model. A higher score indicates a higher probability of an
abnormal cell tower. In our system, we identify an abnormal
cell tower when its abnormal score exceeds our specified
threshold. Specifically, we use the 97th percentile of abnormal
scores of the last training set as “abnormal threshold”.

Implementation. The implementation of our model is based
on the TensorFlow framework and we pick Adam with a
learning rate of 1e−3 and a batch size of 4096 as the optimizer.
We randomly select approximately 8 million cell towers over
China as the training dataset and the training epoch is set to
100.

VI. REAL TIME LOCALIZATION

In this section, we measure the real-time UMD from both
indoor/outdoor mobile users, and localize them in real time
based on our large-scale fingerprint set. As shown in Figure 16,
our system consists of candidate region production, feature
map generation, and CNN model training/inference.

A. Candidate Region Production

Estimating an appropriate candidate region is crucial and
efficient in cellular positioning, e.g., determining whether the
user is inside a shopping mall or at a restaurant without
searching all fingerprints. The main challenge involves the
precision of central grid cell and the proper size of region
area (evaluated in Section VIII-J). Too small regions may miss
correct locations outside the region, while too wide regions
cause a larger number of model parameters and unnecessary
computation during training/inference.

Denote the cellular signature is recorded as M =
(MP ,MQ) ⊂ Rn×2, i.e., the RSRP and RSRQ readings heard
from n cell towers (sorted by the signal strength), and our
algorithm consists of three steps.

Step 1: Cellular signature normalization. We transform
the measured cellular signature to a normalized value based
on our bucket-based storing mechanism, and produce the
corresponding signature vector V P and V Q. We also smooth
such vectors with α = 0.1 on its peak value.

Step 2: Similarity computation. For the ith heard cell
tower, its RSRP and RSRQ signature vectors (Byte 1 ∼ 7)
on grid j are represented as FP

i,j ⊂ R7 and FQ
i,j ⊂ R7 in the

fingerprint set. We define the signature similarity as the dot
product between two vectors, i.e.,

sPi,j =
V P · FP

i,j

||FP
i,j ||1

, sQi,j =
V Q · FQ

i,j

||FQ
i,j ||1

(7)

where sPi,j and sQi,j represent the similarity on RSRP and
RSRQ signatures, respectively.

Step 3: Central grid selection. In order to derive the most
probable grid cell that the user may appear, we sum up the
weighted similarity of each grid cell j over all heard cell
towers, i.e.,

sj =

n∑
i=0

wi · (λP · sPi,j + λQ · sQi,j) (8)

where λP = 0.5 and λQ = 0.5 represent the weight for RSRP
and RSRQ signatures, respectively. wi denotes the weight for
individual cell tower based on its signal strength, e.g., wi = 1
for the primarily-connected cell tower and wi = 0.8 for the
strongest neighbouring cell tower.

Finally, we derive the grid cell ĵ with the highest score,
and regard it as the central grid. We further construct a square
area composed of N ×N grid cells around the center grid as
a candidate region (N is set as 32 based on the the large-scale
experiments).

B. Feature Map Generation

Based on the candidate region, we aim to estimate user’s
relative position towards region center via current measure-
ment data. Specially, we construct a multi-dimensional feature
map on both primarily-connected and neighbouring cell towers
via the large-scale fingerprint set. For grid cell j in candidate
region, its features on cell tower i include four categories:

• RSRP signature similarity sPi,j ,
• RSRQ signature similarity sQi,j ,
• PV heat feature hPV

j ,
• UV heat feature hUV

j ,
where RSRP(RSRQ) similarities are calculated via Equation 7,
and PV(UV) features are computed via Equation 2. All of them
are incrementally updated based on crowdsourced trajectories
with a sliding time window (e.g., 30 days in our system).

Next, we normalize the values on each feature domain
among all possible grids, and construct a multi-dimensional
feature map of the candidate region. If there is no features
in a grid, the feature value is set as zero. Finally, we stack
W = 4n feature maps among n cell towers as the input of
CNN model.

C. CNN Model for Localization

Instead of directly estimating absolute coordinates, our
CNN model predicts user’s deviated location (∆x,∆y) toward
the center point (x0, y0) in candidate region with multi-
dimensional feature maps.

Structure. As shown in Figure 17, our CNN model is com-
prised of three convolutional layers, three max-pooling layers,
and two fully connected layers. In the first convolutional layer,
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Fig. 17: CNN structure, which consists of three convolutional
layers, three max-pooling layers, and two fully connected
layers. Feature maps are represented by channel@height ×
width.

we employ a multi-scale framework that utilizes three different
convolution kernels (3 × 3, 5 × 5, and 7 × 7) to extract
spatial features at varying scales. Then, a 5 × 5 convolution
kernel is used for the last two convolutional layers. Also, three
2 × 2 max-pooling layers are leveraged to reduce network
parameters. Finally, features are flatten and fed into two Fully
Connected (FC) layers to predict the relative location.

Loss computation. Based on the predicted location devia-
tion (∆x,∆y), user’s global coordinate (x̂, ŷ) can be calcu-
lated by:

(x̂, ŷ) = (x0 +∆x, y0 +∆y) (9)

where (x0, y0) is the coordinate of the center point in candidate
region. User’s ground truth location (x, y) is measured by
the opportunistic geo-tags, e.g., outdoor trajectories by the
window. In addition, we employ the Haversine formula to
compute the loss value, which implies the distance between
the predicted location and its ground truth along earth surface,
i.e.,

L = 2r arcsin (

√
sin2 (

ŷ − y

2
) + cos y cos ŷ sin2 (

x̂− x

2
))

(10)
where r is the radius of the earth.

Implementation. Our models are implemented in Ten-
sorFlow. For training, we use the Adam optimizer with a
learning rate of 5e-4 and a batch size of 512. These settings
were determined through experimentation and optimization,
ensuring the best performance for our cellular localization
system. We train the model weekly and prepare approximately
10 million samples for each training. Training the model for
30,000 epochs allows it to learn and adapt to the specific char-
acteristics of our dataset over China, enhancing its predictive
capabilities.

VII. PICKUP RECOMMENDATION

With the estimated position by cellular localization at
black-hole, DiDi ride-hailing platform provides an appropriate
pickup position for each passenger. Specially, our pickup
recommendation mechanism includes three steps, i.e., road
discretization, candidate estimation, and customized recom-
mendation.

Road discretization. Since passengers get on vehicles
mostly by road sides, pickup positions should also be produced
along the road side. In order to simplify the searching range,
we divide roads into segments at 10m interval, and calculate

Road segment features and personal information

Embedding

FM Layer DNN Layer

Output LayerInner Product

Activation Function

Addition

Fig. 18: DeepFM architecture for pickup recommendation. It
consists of an embedding layer, a FM layer, a DNN layer, and
an output layer.

the quantity of user visits on each road segment at different
time.

Candidate estimation. First, we select all road segments
within 500m to construct the candidate set, and extract the
distance, user popularity, and historical trajectories on each
candidate segment. In addition, we add individual passenger’s
pickup history within 1500m from the estimated position.
Such personal information helps to ensure a minimal satis-
factory service in case there sometimes exist extreme errors
in cellular localization.

Customized recommendation. Traditional pickup recom-
mendation at DiDi is formulated as a binary classification
problem, i.e., whether the suggested pickup position is within
tolerable region (less than 30m). Our design has gone through
two stages during its large-scale deployment.

Stage 1: Pairwise ranking instead of binary classification.
Based on the crowdsourced large-scale orders, we propose
a scoring mechanism to all candidate pickup locations to
highlight the most confident ones, e.g., the suggested pickup
position should be near and at the same road side with the
practical one. Furthermore, we transform the binary clas-
sification issue into a pairwise ranking problem for better
recommendation accuracy.

Stage 2: Deep neural model. Traditional recommendation in
industry always adopt tree-based models, e.g. GBDT [16], but
such model does not support online learning due to its non-
differentiable parameters, hence it can not adapt to dynamic
orders which may extensively differentiate with the training
set. In addition, tree-based models are also poor at capturing
sufficient features with large amount of data. Thus, we explore
and adopt a DeepFM [17] recommendation model.

The architecture of our DeepFM model is shown in Fig-
ure 18. Specially, it employs historical road features and
personal information (e.g., user ID, city ID, week index,
hour index) as inputs, and consists of four layers: 1) an
embedding layer, transforms personal information into vectors,
2) a Factorization Machines (FM) [18] layer, learns linear
and pairwise feature interactions, 3) a Deep Neural Network
(DNN) layer, learns high-dimension features by deep neural
networks, and 4) an output layer, combines FM layer and DNN
layer to produce the final score.
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Fig. 19: Overall performance.

TABLE III: The relationship between pickup position error
and call ratio/long call ratio.

Pickup Position Error <30m 30∼50m 50∼100m >100m
Call Ratio 17.76% 33.28% 48.28% 69.87%

Long Call Ratio 0.74% 4.30% 10.61% 27.08%

VIII. LARGE-SCALE EVALUATION

A. Methodology

Data collection. Our large-scale cellular-based pickup ser-
vice was deployed in practice with the DiDi application, a ride-
hailing service like Uber. Our fingerprint dataset was collected
and updated within 2 years, i.e., 2021-2022, across China.
Our test dataset was also collected within these 2 years from
the real deployed system, including ∼50 million orders, ∼13
million devices, and 918 brands of smartphones with ∼9300
different models, across 4541 cities in China. We tested our
system with all three main cellular service providers, i.e.,
China Mobile, China Unicom, and China Telecom.

It is worth to note that we only deployed our system on
the Android platform as iOS provides its built-in cellular
localization service. In other words, iOS users will use its
built-in cellular localization service to get a position, and then
use this position as the input for our pickup recommendation
service. Finally, the pickup recommendation service gives a
position and suggests users wait for the driver at that position.
Metrics. We compare our system from multiple aspects using
the following metrics:

1) Pickup position error: While academic research typi-
cally evaluates location accuracy using absolute location
errors, it is impractical for the industry to cover the vast
array of smartphones and the diversity of buildings in
all cities. To enable large-scale evaluation, we adopt a
crowdsensing approach that measures the distance be-
tween recommended and actual pickup positions5

2) Over-30-meters ratio: Our experience indicates that if
the distance error is lower than 30 meters, the system
will provide both drivers and passengers with satisfactory
user experience because passengers typically don’t want
to move to another position on foot over-30-meters far

5The actual pickup position is recorded by drivers within the DiDi app when
passengers board vehicles, as it marks the start of ride charging process.. This
distance metric is a key performance indicator (KPI) in the industry, as it helps
avoid users making phone calls or extended conversations with drivers during
the pickup phase (Table III).

from them. Therefore, we calculate the over-30-meters
ratio as the ratio of the distance error higher than 30
meters with respect to the number of all the orders.

3) Cancel ratio: If the system gives an incorrect position of
the passenger to the driver, the driver cannot successfully
find the passenger at that position. In this case, the
passenger may cancel the order. Therefore, a lower cancel
ratio means better system performance.

4) Call ratio: Similarly, if the system gives an incorrect po-
sition of the passenger to the driver, the driver may make
a phone call to ask where the passenger is. Therefore, a
lower call rate indicates better system performance.

5) Long-call ratio: Furthermore, drivers often keep calling
until they successfully pick up the passenger. Therefore,
if the driver stays calling longer than the 60s, it means
that the system gives a recommended position too far
from the passenger. To this end, a lower long-call ratio
means better system performance.

Comparisons. We consider the iOS built-in localization re-
sults as a system-level solution, as it can access physical in-
formation, while our approach is an application-level solution
using only public APIs6. We also compare our results with
existing methods, including CID [3], GMM [19], NBL [4],
DCCP [20], DeepLoc [5], and DMM [21].

B. Overall performance

Compared with iOS. The iOS system benefits from access-
ing physical information and unrestricted data at any time,
providing a strong foundation for localization. On the other
hand, our solution is an application-level approach relying on
public APIs and data collected during app usage. Moreover,
iOS devices have a homogeneous software and hardware
environment, creating a controlled and stable ecosystem for
localization. In contrast, Android devices come from numer-
ous manufacturers, resulting in a wide variety of hardware
sensors and software configurations. This diversity introduces
significant instability in the collected fingerprints, making the
localization task more challenging.

Our system outperforms iOS in terms of pickup location,
as shown in Figure 19a. Specifically, our system achieves

6We are unable to implement our method on iOS devices because iOS does
not provide developers with a publicly accessible API for obtaining signal
strength information from servicing/neighboring base stations.
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Fig. 20: Performance across different scale of cities.
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1 2 3 4 5 6 7 8 9 10 11 128

10

12

14

Er
ro

r (
m

)

Ours
iOS

(a) A small city
1 2 3 4 5 6 7 8 9 10 11 128

10

12

14

Er
ro

r (
m

)

Ours
iOS

(b) A median city
1 2 3 4 5 6 7 8 9 10 11 128

10

12

14

Er
ro

r (
m

)

Ours
iOS

(c) A large city

Fig. 22: Performance among 12 months at three typical cities.
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Fig. 24: Performance across different service providers.

a 0.54m (4.58%) lower median distance error compared to
iOS. Additionally, our system exhibits lower over-30-meters
ratio, cancel ratio, call ratio, and long-call ratio, as illustrated
in Figure 19b. This noteworthy accomplishment represents a
modest improvement over the iOS native mechanism.

Compared with alternatives. Figure 19a demonstrates that
our system achieves significantly better results compared to
various alternatives. Specifically, the distance error of our
system is 3.98m (26.15%) lower than DCCP, 13.34m (54.27%)
lower than NBL, 11.69m (50.98%) lower than GMM, and
25.99m (69.81%) lower than CID. These improvements are
attributed to our incorporation of user visits, cellular signa-

tures, feature updating mechanism, and CNN model.

Regarding DeepLoc [5], which is designed for cellular
localization in areas with fixed sizes and cell towers, we
compare our approach with a specific area in a large city mea-
suring 570m × 510m with 114 cell towers obtained through
crowdsensing. Our method achieves a significant reduction of
5.44m (32.63%) in median pickup position errors compared
to DeepLoc which uses a multinomial logistic model.

Compared with DMM [21]. DMM is a map matching
approach that operates on sequential cellular requests, while
our method focuses on one-shot localization. Within DiDi, we
have also developed and deployed a map matching method
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based on ListNet [22], Hidden Markov Model (HMM), and
Deep Neural Networks (DNN). For comparison, we reproduce
the DMM system and evaluate its performance using 200
real-world traveling sequences from our dataset, covering a
distance of around 1,700 kilometers. Figure 19c shows that our
approach has increased the precision by 9.43% (from 81.70%
to 91.13%) and recall by 8.41% (from 79.99% to 88.40%),
thanks to the improved route connectivity and more accurate
locations.

C. Impact of the city development level

Since different development levels of a city will have
different environments, such as different heights of buildings,
different numbers of base stations, etc., which might affect the
fingerprint granularity and quality. Therefore, it is important
to characterize our system performance in different cities with
different development levels.

To characterize the performance of our system with different
city development levels, we conduct experiments in three cities
with different scales of population. In particular, we classify
all the 4541 cities into three categories according to their
population, i.e., small (<10 million), median (10∼20 million),
and large (>20 million). Then we calculate our metrics in a
typical city in each category, respectively.

Compared to iOS (Figure 20), our system gets lower pickup
distance error, over-30-meters ratio, cancel ratio, call ratio, and
long-call ratio, respectively. It indicates that our system will
derive better user experience no matter the development level.
In addition, the performance is found to be similar across the
three cities, indicating the model’s generalizability.

D. Impact of different brands and models of mobile phones

Since different brands or models of mobile phones will use
different base-band chips, therefore, the cellular signal quality,
strength, etc., and further the fingerprint might be different
among different brands or models.

The distribution of different brands is shown in Figure 21a.
The top 5 brands of mobile phones in our dataset are Xiaomi,
Oppo, Samsung, Huawei, and Honor. As shown in Figures 21b
and 21c, and Figure 23 we find that our system outperforms
iOS in terms of all the metrics. On top of that, we compare the
pickup position errors before and after deploying our system
on four mainstream brands of Android smartphones: Mate 30
Pro, Mi 8, Oppo R17, and Honor V20. As shown in Figure 25,

the deployed median errors have significant reductions of
15.33m (57.89%), 22.75m (67.29%), 16.34m (59.68%), and
37.77m (77.40%), respectively. These indicate the stability of
our system, which have the significant ability to process the
measurements from numerous Android smartphones regardless
of the brands and models.

E. Performance of fingerprint update along with the time

Since environmental changes will affect the fingerprint, the
fingerprint should be updated within a certain period. To
verify if our system performs stable along with the time and
characterize the update mechanism of the fingerprint sampling,
we calculate the metrics of 12 months separately in the year
2022, with respect to different populations of cities.

As shown in Figure 22, our system deployed on the DiDi
application outperforms the iOS-based system most of the
time. Therefore, our system performs stably although the
environment is changing, even the diversity of the collected
fingerprints. In terms of temporal variations, there is a differ-
ence of up to 2 meters in accuracy over the 12-month period,
emphasizing the importance of incremental dataset updates.

F. Impact of different cellular service providers

Since different cellular service providers own their base
stations at different positions, the fingerprints collected may
be different among different providers. To verify if our system
achieves a good performance regardless of different service
providers, we calculate the metrics with different service
providers, respectively.

As shown in Figure 24a, our service deployed on the DiDi
application achieves lower distance error compared to the iOS-
based system. In addition, as shown in Figures 24b, 24c, and
24d, our system could also achieve a better performance in
terms of over-30-meters ratio, cancel ratio, call ratio, and
long-call ratio. Therefore, our system could achieve a better
performance regardless of cellular service providers.

G. Comparison between 4G LTE and 5G NR

To evaluate the effect of 4G and 5G on cellular localization,
we randomly select 100,000 travel orders within a week.
Figure 26 illustrates that the median pickup position errors
in 5G increase by 2.05m. This difference can be primarily
attributed to the sparser availability of 5G fingerprints in our
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Fig. 28: Performance of abnormal cell tower detection.

dataset. Specifically, we observe that the proportion of 5G
mobile users is significantly lower (10.3%) compared to 4G
users (89.7%).

To gain further insights, we conduct an experiment where
we randomly remove some 4G fingerprints while keeping a
comparable quantity of 5G fingerprints. Surprisingly, we find
that the pickup position error in 4G increased by 5.67m. This
result suggests that dense fingerprints and small cell coverage
play a crucial role in improving cellular localization.

H. Impact of PCI and EARFCN/NR-ARFCN
To prove that using PCI and EARFCN/NR-ARFCN together

in LTE/NR networks as a part of our augmented cell tower
unique index plays a significant role in localization, we
compare the performance of different augmented cell tower
unique indexes in terms of pickup position error.

As shown in Figure 27, leveraging both PCI and
EARFCN/NR-ARFCN achieves the best performance com-
pared with using without PCI or EARFCN/NR-ARFCN. The
results indicate that our augmented cell tower unique index
construction is conducive to improve positioning accuracy.

I. Impact of abnormal cell tower detection
This sub-section aims to provide the evaluation of multiple

aspects in abnormal cell tower detection phase (Section V).
Performance overview. In order to prove the effectiveness of
our abnormal cell tower detection, we conduct experiments
based on over one million travel orders which we randomly
pick from daily orders. Specifically, we do not consider abnor-
mal cell towers whose abnormal score exceeds the abnormal
threshold in the real-time localization phase, except that all
the scanned cell towers are identified as abnormal ones.

As shown in Figure 28a, we compare the median and mean
pickup position errors with five different abnormal thresh-
olds, i.e., the 99th, 97th, 95th, 92th, and 90th percentiles,
respectively. The results in the upper subfigure illustrate that
removing these abnormal cell towers discovered by the au-
toencoder model has no effect on the median pickup position

error. In contrast, the results in the bottom subfigure show that
removing such abnormal cell towers reduces the mean pickup
position error by 0.98m when the abnormal threshold is set
to 97th percentile. These mean that filtering these detected
abnormal cell towers can avoid huge location errors as much
as possible.
Different scale of cities. To observe the performance of
abnormal cell tower detection in different cities with different
development levels, we randomly select three cities according
to their population, i.e., a small city, a median city, and a
large city. As depicted in Figure 28b, the results show that the
abnormal cell tower detection achieves a better performance
compared to the baseline. Specifically, the mean errors without
abnormal cell towers have significant reductions of 0.69m,
1.13m, and 1.49m, respectively
Abnormal detection network. There are several existing
unsupervised networks for anomaly detection, such as au-
toencoder, GANomaly [23] (a GAN [24] based solution), and
encoder-decoder-encoder network (the GANomaly without a
discriminator). To derive the optimal network for abnormal cell
tower detection, we evaluate their performance on the mean
pickup position error. Figure 28c shows that the autoencoder
network achieves the least pickup position errors with all
abnormal identification thresholds.
Abnormal threshold. Aiming to search the best suitable
abnormal threshold of the autoencoder model to detect abnor-
mal cell towers, we compare the mean pickup position error
utilizing different thresholds, namely, the 99th, 97th, 95th,
92th, and 90th percentiles. The results in Figure 28d show
that the mean error decreases first and then increases, and
reach the optimal value when we choose the 97th percentile
as the abnormal threshold.
Key grid cell selection. A small number of key grid cells
selected for anomaly detection may lead to the autoencoder
model learning insufficiently. To find out the optimal number
of key grid cells, we evaluate the autoencoder model with
different Nh

kgc and Ns
kgc in terms of pickup position error.

Figure 28e shows the mean pickup position error decreases
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Fig. 31: Performance of the
weights λP and λQ (λQ =
1− λP )

first and then increase, and reach the optimal value when we
choose Nh

kgc = Ns
kgc = 8.

J. Effect of localization hyper-parameters and CNN features

This sub-section aims to provide the experiments about
key hyper-parameters and CNN features selection in real time
localization phase (Section VI).
Size of grid cells. Small grid cell size indicates fine-grained
fingerprints on the map, but as a risk of dropping out of the
candidate region with fixed number of grids. We compare
the distance error of the size from 20m to 200m. As shown
in Figure 29a, a box-plot diagram7, large size causes more
distance errors, while small size has better accuracy. However,
we have noted that the mean distance error of 20m was worse
than 50m’s, even 70m’s, which means that too small size could
have larger uncertainty. Based on the above observations,
we choose the grid cell length of 50m and continue the
experiments.
Number of neighboring cell towers. Figure 29b depicts
the effect of the number of neighboring towers used on the
distance error. We clearly observe that using three or more
neighboring cell towers could produce stable accuracy. In order
to balance performance and robustness, we prefer to use 5
neighboring cell towers.

7Whiskers extend from the box by 0.5x inter-quartile range (IQR) [25]
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Fig. 32: Performance of different pickup recommendation
stages.

Quantity of grid cells. With such grid size, Figure 29c shows
distance error with different number of grid cells to form the
candidate region. With the increase of the number of grid cells,
which means larger area of candidate region, the median and
mean distance errors decrease first and then increase, and reach
the optimal value when we choose N = 32 grid cells.
Signature storing mechanisms. Figure 29d shows the effect
of our bucket-based storing mechanism on cellular signatures.
Compared with Gaussian distribution, our design represents
arbitrary distributions, thus it reduces median distance errors
by 1.45m, and mean distance errors by 2.23m, respectively.
Ablation study on CNN features. To evaluate how much
the addition of the four CNN features (i.e., RSRP, RSRQ, PV
and UV) is actually helping, we perform an ablation study
on each feature. Figure 30 demonstrates that using all four
features provides the best accuracy. Meanwhile, the results
without RSRP achieve the worst performance, which indicates
RSRP is the indispensable feature of CNN.
Weights of central grid selection. To find out the optimal
values of λP and λQ in Equation 8, which represent the weight
for RSRP and RSRQ signatures, respectively, we conduct
experiments to compare the distance between central grid cell
and user location with different values of λP and λQ. The
small the distance, the more appropriate the values of λP and
λQ. The results in Figure 31 show that the distance reaches
the minimum value when λP = λQ = 0.5.

K. Recommendation stage illustration

This sub-section aims to provide the performance of two
recommendation stages in pickup recommendation phase (Sec-
tion VII).
Recommendation stage one: from binary classification to
pairwise ranking. When we prepare the dataset for training
recommendation model, i.e., GBDT, there are two options.
One is to conduct a binary classification task, which indicates
that we only need to formulate positive and negative samples.
The other option is to perform a pairwise ranking task,
meaning that we should construct scoring samples. Figure 32a
shows that the GBDT model trained by pairwise ranking
obtains at least 2% improvements over the dataset trained by
binary classification on all major service metrics, e.g., over-30-
meters ratio, cancel ratio, call ratio and long-call ratio. Based
on this result, we choose to construct and use the pairwise
ranking dataset instead of binary classification.
Recommendation stage two: from GBDT to DeepFM.
After adopting the pairwise ranking dataset, we contrast the
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impact of GBDT and DeepFM for recommendation on over-
30-meters ratio, cancel ratio, call ratio and long-call ratio.
Figure 32b indicates that the average percentage improvements
of the four metrics are nearly 2% when we adopt DeepFM
instead of GBDT, which shows that DeepFM learns abundant
feature representations in the pickup position recommendation
issue. Based on the above, we prefer to apply DeepFM in
deployment.

IX. RELATED WORK

A. Cellular-based localization

Compared with GPS technique, cellular network could
provide ubiquitous localization for both indoor and outdoor
environments [26]. First, Cell-ID systems [3] used the posi-
tion of the strongest power cell tower received by the UE
as the estimated location of UE, which only offers a low-
accuracy localization. Then, Angle of Arrival (AOA) [27]–
[29] and Time of Arrival (TOA) [30] based methods were
proposed with specific hardware for outdoor localization such
as Unmanned Aerial Vehicle (UAV) localization [31].

Besides, fingerprint-based methods were developed since
cellular stations were densely deployed [2], [26], [32]–[34].
For example, Cellsense system [35] used the measured RSSI
values to estimate the user’s location with a Bayesian-based
method. Margolies et al. [4] leveraged 4G LTE to create a
wide-area radio map and then developed a network-based
localization with the fingerprinting method. Ray et al. [36]
used Hidden Markov Model (HMM) and particle filter meth-
ods to obtain continuous trajectories. Chakraborty et al. [19]
developed a geo-tag method using Gaussian mixture model
(GMM) to reduce the impact of noise. Tian et al. [37], [38]
proposed a subspace identification method, which could fully
use internal relations of RF fingerprints to improve localization
accuracy. In fact, the high localization accuracy in the above
methods was still not guaranteed by using fingerprinting-based
methods, because the large-scale data measurements and high-
dimensional features were not fully exploited.

B. Deep learning-based localization

Compared with traditional machine learning methods (e.g.,
GMM, and HMM), deep learning [39] could effectively extract
data features, which could address high-dimensional dataset
and complex classification or regression tasks. Therefore, deep
learning methods could be leveraged for indoor and outdoor
localization with wireless data. For example, Wang et al.
proposed the deep autoencoder network with channel state
information (CSI) data for indoor localization [40]. More
importantly, deep convolutional neural networks (DCNNs)
were also used for CSI image-based and tensor-based indoor
localization [41], [42], respectively. Moreover, adversarial
learning was also used to address the environment change and
heterogeneous device problems for indoor localization with
CSI and RSSI values [43], [44]. Also, neural network was
adopted to detect the building, floor, and location tracking
based on RSSI signals [45], [46]. Currently, the light-weight
neural network was also exploited to improve large-scale

indoor localization performance with Bluetooth Low Energy
(BLE) RSSI and geomagnetic field data [47].

Besides, deep learning techniques were also used for out-
door localization with cellular data. For example, DeepLoc [5]
system focused on spatial and data augmentation techniques
to reduce the calibration overhead in the training stage and to
address the noise in RSSI and GPS data. However, this method
only works in the small-scale outdoor environments. Also,
DCCP [20] proposed a CNN method for outdoor localization
with 4G LTE data. In addition, transfer learning was proposed
for cellular outdoor localization with 2G Global System for
Mobiles (GSM) and 4G LTE Measurement Report (MR)
datasets [48]. Moreover, deep reinforcement learning was used
for fast map matching [21] with cellular data. Different of
the previous work that directly predicts the final location,
our TransparentLoc system first uses LTE/NR to predict the
user’ relate position with CNN and then calculates the global
coordinate, which can effectively reduce the localization errors
in large-scale area.

Additionally, TransLoc [49] presented a heterogeneous
knowledge transfer framework for fingerprint-based indoor
localization. Similarly, TRAIL [50] alleviated the problem of
distribution discrepancy between online and offline data and
differences among hetero-measure samples. In comparison, we
avoid applying transfer learning since its data collection is not
efficient for large-scale deployment with numerous buildings,
and we use the crowdsourced outdoor trajectories to infer
indoor locations.

C. Anomaly detection
Anomaly detection is a topic of significant interest in

computer vision, with recent advancements leveraging gener-
ative adversarial networks (GANs). One influential approach,
described in [51], assumes that the GAN’s latent vector repre-
sents the underlying data distribution and applies adversarial
training for anomaly detection. Another notable model, called
GANomaly, was introduced in [52]. It is a semi-supervised
model that employs a conditional GAN with encoder-decoder-
encoder sub-networks in the generator. GANomaly aims to
learn the manifold of a large training dataset composed of
normal samples and then detects anomalies within a testing
dataset containing both normal and abnormal images. Re-
searchers have also explored combining GAN-based anomaly
detection with fingerprint-based localization. For instance,
Haojun et al. developed RAD-GAN [53], an anomaly detection
model for indoor fingerprinting-based localization inspired by
GANomaly. RAD-GAN solely relies on unlabeled fingerprints
and achieves outstanding performance, surpassing methods
like OC-SVM [54]. Building upon these previous efforts, we
propose an Encoder-based model for abnormal cell tower
detection, treating it as an unsupervised learning problem
where the boundary between normal and abnormal towers is
not clearly defined. Unlike GAN-based methods, our model
does not incorporate a discrimination network.

X. DISCUSSION

Network switching. While jointly using both 4G and 5G
measurement parameters can provide more comprehensive
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information, it may not be practical in practice. Most smart-
phones do not enable connectivity across multiple networks
simultaneously, limiting their ability to detect cell towers from
other mobile networks. Additionally, manual switching from
5G to 4G can be inconvenient for users and disrupt the overall
user experience. As a result, sticking with the 5G network,
especially if the signal strength is adequate, is often preferred
over constant network switching.

Industrial service metrics. We have noticed that passengers
may cancel the order or make a phone call for various reasons,
such as no need to travel, far-away driver locations, etc. In
order to minimize the impact of occasional cases such as order
cancellations or phone calls, we conducted our evaluation with
at least one million orders or more. This approach ensures
that there is little fluctuation in each service metric, providing
a more reliable assessment. Additionally, we realize that user
experience surveys are a valuable way to connect metrics with
performance. However, we have not conducted such a well-
designed survey over the past two years, and it is currently
difficult to provide this data. Consequently, we hope we can
conduct and analyze user experience surveys to find out the
connection between metrics and performance clearly in the
future.

Integration with other approaches. For instance, Zee [55]
utilizes inertial sensors and indoor floorplans to track user
continuous movements, while our method focuses on one-
shot localization. In addition, the lack of indoor floorplans
is one major obstacle to its ubiquitous coverage, since service
providers have to conduct effort-intensive and time-consuming
business negotiations with building owners or operators to
collect the floor plans, or wait for them to voluntarily upload
such data. Neither is conducive to large scale coverage in short
time. In comparison, our solution does not rely on indoor floor
plans, and integration with the above indoor tracking systems
will further improve the location accuracy.

Abnormal cell tower classification. From our observations on
abnormal cell towers, they possess two significant characteris-
tics, i.e., multi-cluster and extra-wide. Clustering algorithms
are conducive to detecting multi-cluster cell towers, while
they are useless against extra-wide cell towers. In fact, as we
remove abnormal cell towers in localization phase, it is not
essential to classify these such abnormal cell towers into two
or three categories.

System designed hyper-parameters. For the most of design
parameters in TransparentLoc, we have conducted sufficient
experiments to find their optimal values for our system.
However, for the bits of hyper-parameters that are not vital
for our system, we have designed them according to the long-
term experience of cellular localization in the DiDi ride-hailing
platform.

Areas without RF signals. It is worth noting that there exists
indoor locations without cellular or WiFi signals due to signal
attenuation, high-rise buildings blocking, etc, where we cannot
provide cellular localization even the ride-hailing service. We
will investigate pedestrian inertial tracking methods to improve
the user experience.

XI. CONCLUSION

In this paper, we share our technical insights and devel-
opment experience to provide large-scale cellular localization
availability for pickup service at DiDi ride-hailing platform.
We address many practical challenges we encountered during
the 2-year real-world deployment at most cities in China with
millions of orders everyday. We hope this work can boost
future attentions and efforts on cellular-based localization
techniques which enables crucial safeguard services at anytime
and anywhere.
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