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How Many Bumps in Your City? Personalized
Bump Seeker With Mobile Crowdsensing

Xuan Xiao , Ruipeng Gao , Weiwei Xing , Member, IEEE, Chi Li , and Lei Liu

Abstract— Decorating speed bumps is a common and effective
measure to compulsively reduce vehicular velocity in dangerous
regions, especially at tunnels, slopes, and parking lots. Despite
a decade of deployment, the bump information is still sporadic
in map-based applications, for example, driving alert ahead of
bumps. One major obstacle is the lack of an up-to-date bump
database, thus service providers have to hire dedicated personnel
to gather and periodically calibrate such data, which is effort-
intensive and time-consuming to large-scale coverage. In this
article, we propose a personal bump seeker (PBS), a novel mobile
crowdsensing application to automatically identify and update
speed bumps in urban cities. Specifically, we formulate bump
detection as a regression model, thus improving the robustness
of inertial patterns on temporal domain. We also explore a leader-
follower mechanism that automatically extracts the bump signal
for training and inference in individual smartphones, regardless
of different smartphones, vehicles, and driving habits during
crowdsensing. Finally, we implement a prototype and conduct
extensive experiments on large-scale real-world traffic datasets
collected by the DiDi platform, and the results demonstrate our
effectiveness in producing a city-level bump database.

Index Terms— Crowdsourced measurement, leader-follower
mechanism, personalized training, speed bump detection.

I. INTRODUCTION

DEPLOYING speed bumps [see Fig. 1(a)] has been an
effective administrative measure for driving safety over

a period of decades. Drivers have to slow down vehicles to
get rid of the sharp turbulence when passing by, thus focusing
their attention on accident-prone areas such as steep slopes,
dim tunnels, parking lots, and so on.

However, such bump information is extremely scarce and
unavailable in most maps. This has become a huge obstacle
to intelligent transportation systems.

1) For transportation administration, the bump database
satisfies the fundamental cognitive needs to understand
road conditions. For example, we care about whether the
traffic congestion is caused by excessive installations of
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Fig. 1. (a) Speed bump. (b) Accelerations along gravity direction when
passing the bump.

speed bumps, or if a new bump should be placed in an
intersection where traffic accidents often accrue.

2) For individual drivers, the bump information not only
supports early driving alert, but also calibrates the
vehicle’s location in global positioning system (GPS)-
blocked environments (e.g., vehicle tracking [1], [2]
in underground parking structures), thus improving our
driving experience intensively.

Constructing a complete and up-to-date bump database
at low cost is urgently needed. Before the popularity of
smartphones, [3], [4] utilized special sensors to measure the
road condition. High-precision special sensors can identify and
measure the road condition with high quality, at the cost of
manufacture which makes it difficult for large-scale deploy-
ment. Recent works [1], [5]–[8] have leveraged the inertial
data from smartphones to detect speed bumps, that is, via the
fluctuated acceleration along gravity direction [see Fig. 1(b)].
However, most of them utilized dedicated datasets instead of
real-world crowdsourced data, thus escaping from combating
inevitable errors and noises in crowdsensing. Other approaches
use images [9]–[11] but also face common limitations in
vision: dark/changed lighting, blurry images, glass walls, and
restrictions on photo-processing due to computation ability.

In this article, we propose personal bump seeker (PBS),
a novel personalizing-based system for city-level bump data-
base construction using crowdsourced data from commodity
smartphones. Unlike using a general model or fixed thresholds
to recognize each bump, we explore a personalized model
training mechanism which is capable of producing very adapt-
able bump observations. Unlike images, its performance is not
affected by lighting conditions or weather, nor does it occupy
too much computation resource. Bumps in city level can be
identified in a few hours by crowdsourcing, eliminating huge
cost for humans.

Despite its potentials, constructing resilient and robust
bump database is far from straightforward. First, the duration
of bump signals varies with different vehicles and driving
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behaviors, thus it is difficult to set a uniform time window
for binary classification. Second, in order to customize a
model for each individual for accuracy, their data should be
automatically annotated, instead of effort-intensive and time-
consuming manual annotation by humans. Finally, both the
inertial signal and the global position of bumps are required
to update the map database for mobile applications.

Considering the above challenges, our contributions include
as follows.

1) We propose a novel regression method for bump recog-
nition based on inertial readings. It devises the bump
duration probability to formulate the progress of a vehi-
cle passing over the bump, thus enhancing the model
adaptability.

2) We propose a leader-follower mechanism to improve
the recognition accuracy through model customization.
To produce the training data automatically without user’s
participation, we effectively align and extract the most
similar signal segment with known patterns.

3) We propose a hidden Markov model (HMM) to detect
bumps based on the sequence of bump duration proba-
bility. We further extract the bump signal and record its
associated locations on the map.

4) We conduct experiments on two datasets: dedicated data
with manually labels, and large-scale real-world data
collected by a DiDi ride-hailing platform. Results have
shown our effectiveness.

The architecture of our system will be depicted in III.
In Section IV, we will describe the data processing flow and
the recognition model we designed. The method of personal-
izing a general model is presented in Section V. Section VI
shows the inference procedure of the placement of bumps.
Section VII introduces our experimental design, results, and
analysis of the results in detail.

II. RELATED WORK

In the field of road condition detection, methods usually are
divided into vision-based methods and inertial measurement
unit (IMU)-based methods.

A. Vision-Based Methods

Vision-based methods usually use cameras or traffic mon-
itoring cameras placed on vehicles as data collection devices
to classify and locate road conditions through image or video
processing. With the development of artificial intelligence,
machine learning and deep learning methods are widely used
in this field.

Schiopu et al. [9] proposed a threshold-based algorithm to
extract candidate regions on frames and used a decision tree
to classify the road condition. Fan et al. [10] used a super-
vised, convolutional neural network (CNN)-based method to
recognize different road conditions on pavement textures.
Arya et al. [12] used CNN methods to detect road damage.
They also use transfer learning to customize detection models
for other cities. Quintana et al. [11] collect the image of the

road from a single camera on a light truck and use support-
vector machine (SVM) to detect and classify cracks on road
surfaces. However, the vision-based methods have limits on
bad weather. Image processing is very susceptible to rain, snow
or cloudy or light, and other environmental factors. Among
video-based processing schemes, the influence of the device
angle on the actual results is mentioned, for example, video
processing needs to ensure that the device maintains a fixed
angle. More than that, another obvious limitation of the visual
method is the need for labeled image data. Image annotation
is time-consuming and labor-intensive work.

B. IMU-Based Methods

The other method for road condition detection is
IMU-based, that is, accelerometers and gyroscopes. When
sensors deploy on driving cars, the bumps and potholes will
reflect on IMU readers. Road condition methods based on IMU
are mainly in two ways: detection based on a threshold and
detection based on the machine learning method.

Pothole Patrol System (P2 approach) [3] is an earlier road
surface monitoring method based on mobile sensors. They
manually annotate the abnormal signals and use filters to
control the thresholds for rejecting the “non-pothole” events.
Mednis et al. [13] improved the P2 approach. They pro-
posed more specific threshold-based algorithms: Z-THRESH
(improvement approach of z-peak threshold detection in Pot-
hole Patrol [3]) to threshold the acceleration amplitude at
Z -axis, Z-DIFF to detect fast changes in vertical acceleration
data, STDEV(Z) to calculate the standard deviation of vertical
axis acceleration, and G-ZERO to judge whether all the three-
axis values are below the specific threshold level. However,
threshold-based methods are always ineffective because of the
diversity of abnormal signals.

With the development of machine learning, some
researchers use machine learning methods to detect road
conditions. Mohamed et al. [14] proposed an intelligent
road detection system. The smartphone is placed in the
car to collect acceleration and GPS data, and the data is
pre-processed using a second-order high-pass Butterworth
filter. Cross-validation is applied for acceleration and GPS
data. In the classification stage, an SVM classification
algorithm and two different kernel functions are used to
classify the road surface into two categories: smooth and
bumpy. El-Wakeel et al. [6] collected the accelerometers and
gyroscopes data from smartphones attached to the driving
cars. Then they developed a wavelet packet de-noising method
to enhance the quality of data. After the feature extraction
from statistical, time domain, and frequency domain, they
applied the SVM method on the data to classify the road
condition. To get better classification results, [5] expounds
the Random Forest method in road condition detection tasks.
They extracted features from different frequency domains.
The Random Forest method exhibited the best classification
performance for potholes, with a precision of 88.5% and
recall of 75%.

Some methods use dynamic time warping (DTW) to
enhance classification accuracy. Singh et al. [7] improved the
classification accuracy of detecting road surface conditions
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Fig. 2. System architecture.

by using the DTW2 technique. The main features of DTW
are its ability to automatically cope with time deformations
and different speeds associated with time data. The simplicity
of DTW is adaptive to resource-constrained devices such as
smartphones, and the training procedure is as fast as techniques
such as SVM, HMM, and artificial neural network (ANN).
Also, [8] presents the method using IMU of smartphone
and crowdsourcing. They used DTW to compare two time-
dependent series to enhance the accuracy and performance of
road condition detection. After applying a brief random forest
filter to distinguish anomaly data, [15] proposed a system
based on DTW that utilizes a series of acceleration data to
discover where might be anomalies on the road, named quick
filter-based dynamic time warping (QFB-DTW).

However, it is difficult for general recognition patterns
or recognition models to recognize large-scale crowdsourced
data.

III. SYSTEM OVERVIEW

A. Architecture

In this article, we propose PBS that effectively utilizes
the inertial data from crowdsourced in-vehicle smartphones
to seek road bumps at city level. Fig. 2 depicts our system
architecture which is comprised of data processing, general
model training, personalized model training, and personalized
on-device inference.

First, we establish a bump database through a small amount
of manually annotated data and train a general bump detection
model. In order to identify bumps for individual drivers despite
their specific vehicle types and driving behaviors, we train their
personalized models based on their associated bump signals
when they pass the annotated bumps (with GPS positions).
Finally, these crowdsourced drivers go through the whole city,
with their personalized model to seek new bumps and augment
the database.

IV. GENERAL MODEL TRAINING

A. Segmentation and Feature Extraction

For both training and inference, the raw inertial data will
undergo segmentation and feature extraction operations before
feeding into the model.

1) Sliding Window: To provide inertial sequences with fixed
size for model training, we set the window size as 1.5 s and
the step length as 0.4 s. The effect of different window sizes
are analyzed in Section VII.

2) Features: For sequential data, features extracted from
time domain, frequency domain, and wavelet domain have
been proved to be effective [16]–[18].

1) Time-domain features reflect the vibration of the signals.
In addition to common ones such as mean, median, vari-
ance, standard deviation, maximum value, and minimum
value, we also calculate statistical variables such as the
RMS, range, skewness, and kurtosis [19]. Thus, there
are ten statistical variables in our time-domain features.

2) Frequency-domain features are better at expressing the
variation amplitude of signals. We conduct fast Fourier
transform (FFT) operation to derive the frequency infor-
mation and calculate ten statistical variables as the
frequency features.

3) Discrete wavelet transform (DWT) decomposes the sig-
nal into several subband wavelets. We follow [5] and
choose the Reverse Biorthogonal 3.1 wavelet to extract a
list of 30 (10 statistical variables × 3 subbands) features.

We have discussed the effect of different domain features
in Section VII.

B. Model Design

1) Bump Duration Probability: We explore a metric of
bump duration probability to describe the progress of a vehicle
passing over the bump.

It is defined as the probability of a bump signal within
the time window, that is, the overlap of the window and the
bump signal. It can avoid to determine whether the edge of a
bump signal is classified as a bump, but using the continuous
probability instead. When the time window slides with the
sequential signal, this issue belongs to a typical regression
problem.

2) Label Design: Fig. 3 shows that as the time window
slides, there is an increasing overlap area Loverlap between the
time window and the bump signal (annotated manually). Note
that since the duration of a signal (Lsignal) varies significantly
via crowdsensing, it may be larger or smaller than the fixed
time window (Lwindow). Thus, we define the segment label as
the fraction of overlap area within the smaller one of Lsignal

and Lwindow, that is,

label = Loverlap

min
(
Lwindow, Lsignal

) . (1)

This formulation ensures that the label distribution is within
[0, 1], even the time window may not cover the whole signal.

3) Training: We employ the XGBoost [20], [21] algorithm
to learn the duration probability from manually annotated
bump segments. XGBoost is an optimized distributed gradi-
ent boosting library which is highly efficient, flexible, and
portable. Its objective is set as regression with a gbtree booster
in our system. In addition, XGBoost is able to conduct con-
tinually training based on existing models, which is suitable
for personalized training on smartphones. For general training,
we take 200 epochs to ensure the model well trained.
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Fig. 3. Overlap between time window and bump signal.

Fig. 4. Architecture of the leader-follower mechanism.

Fig. 5. Process of data auto-annotation.

V. PERSONALIZED TRAINING

In order to identify bumps for crowdsourced drivers,
we explore a leader-follower mechanism to train a person-
alized detection model for each individual. The architecture
is shown in Fig. 4. The leader is equipped with a few
manually annotated data and a generally trained model. When
followers encounter annotated bumps by leaders, we extract
their corresponding bump data (i.e., data auto-annotation) and
train their own personalized model (i.e., model fine-tuning).

A. Data Auto-Annotation

As shown in Fig. 5, the data auto-annotation contains three
steps to produce personalized data for training, including
clustering, GPS matching, and signal matching.

1) Clustering: We design a clustering algorithm [22] to
identify the fluctuation signal in the raw data. Specifically,
we use a small time window of 1 s and a long step length of

Fig. 6. Diagram of signal wave matching.

Fig. 7. Interval represents the length between two peaks and duration is the
length of the whole bump signal.

0.9 s, and extract features including Mean, Range, and Std,
which are different from the parameters in Section IV-A.
Next, we cluster these data segments by the k-means algorithm
(k = 2) to distinguish smooth and fluctuant data and merge
adjacent fluctuate signals of neighboring time windows.

2) GPS Matching: Since the GPS location of a few bumps
is annotated by the leader, we use them to remove the interfer-
ence (e.g., hand movement) in fluctuation signal segments. For
every segment in fluctuation signal, if there is an annotated
bump within a small distance (e.g., <10 m) and with the
same orientation (<45◦), we regard this segment as a candidate
bump signal.

3) Signal Matching: Due to the diversity of vehicles and
driving behaviors, a bump signal may fluctuate at different
duration between leaders and followers (see Fig. 6). Thus,
we explore a two-step algorithm to align their bump signals
and remove outliers from the candidates.

Step 1: Bump duration estimation. We estimate the duration
of each bump signal in candidate bump signal. In practice,
we observe that there is a proportional relationship between
the duration of bump signal and the time interval between two
adjacent signal peaks (shown in Fig. 7). Thus, we calculate the
follower’s signal duration D f as

D f = τ f

τl
× Dl (2)

where τ denotes the time interval between two adjacent signal
peaks, and Dl represents the signal duration from the leader.

Step 2: Signal alignment. We adopt a DTW [23], [24]
algorithm to align the bump signal between leaders and
followers. By the bump duration we estimated, we can segment
a signal from the follower and take it as input of DTW together
with the corresponding one in the leader. DTW stretches or
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Fig. 8. Example of DTW. Left: Asymmetric alignment between two signals.
Right: A pointwise comparison of two signals. The distance of points is
calculated in Euclidean.

Fig. 9. Process of inference.

compresses two signals to make the signal of the follower
resemble the leader one as much as possible and then aligns
every element of them (shown in Fig. 8). After that, by sum-
ming the distances of every pair of aligned elements, we can
get an indicator to measure the similarity of two signals: the
smaller the distance summation, the more similar they are.
Finally, we use a sliding window over the candidate signal to
derive a signal segment with the highest similarity.

B. Model Fine-Tuning

In order to produce a personalized model, we exploit the
personal training data to fine-tune the general model. The
procedure is similar to the training of a general model. First,
the annotated data is labeled by the method in Section IV-B.
Second, we train a new XGBoost model based on the general
model. Since the general model has already been trained, the
training process of fine-tuning will not take much time, for
example, 50 epochs are tested to be efficient.

VI. INFERENCE

Based on the bump duration probability produced by general
and personalized models, we further extract precise bump
signals from inertial data and estimate their locations on
the map. As Fig. 9 shows, the personalized model uses an
XGBoost algorithm to generate a sequence of bump duration
probabilities (see Section IV) and we formulate an HMM [25]
to depict the process of passing a bump. Next, we identify and
extract the complete bump signal and record its location based
on crowdsourced GPS trajectories.

A. Hidden Markov Model

We exploit the bump duration probability to formulate the
process of passing a bump. Setting a threshold as is can help
us to identify the bump, but the threshold varies for different
smartphones and vehicles. Based on the temporal correlations
of duration probabilities over a sequence, we propose an
HMM to inference personalized bump behaviors.

Fig. 10. (a) State transition relationship. (b) Output observation.

1) Hidden States: When a vehicle passes over a bump,
it goes through four movement states, for example, driving
on the flat road, encountering the bump, passing the bump,
and leaving the bump. These vehicle states are defined as the
hidden states in HMM, let Q be the set of all possible states,
that is,

Q : {enter, quit, passing, normal}. (3)

In addition, our aim is to precisely identify the passing state,
which indicates the vehicle is locating on the bump. The
transition relationship of each state is shown in Fig. 10(a).
Every state has a probability to repeat itself, and the regular
transition order of passing a bump is normal, enter, passing,
quit, and normal. Note that we allow the state transition from
enter to quit, which plays an important role in filtering the
small vibration.

2) Observation States: Since we use the sliding window to
segment inertial data, the variation along the duration prob-
ability sequence implicitly indicates the process of passing a
bump. For example, Fig. 11 shows that the duration probability
varies when the time window slides, with the observation states
of Flat, Up, Flat, Down, Flat on its variation, and our aim is
to estimate the corresponding hidden states. Thus, there are
three observation states in HMM, that is,

V : {up, down, flat} (4)

where up means the bump duration probability increases,
down is the opposite, and flat means the variation of duration
probability is rare. The relationship between hidden states and
observation states are shown in Fig. 10(b). A flat state can be
caused by normal and passing states, while up usually caused
by enter and quit for down.

3) Problem Formulation: A typical HMM involves the
hidden states Q, the observation symbols V , and specification
of three probability densities A, B , and π . A is the state
transitional probability matrix [see Fig. 10(a)], B is the obser-
vation probability matrix [see Fig. 10(b)], and π is the initial
state probability. After obtaining the observation sequence
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Fig. 11. Example of an HMM. Top layer shows that a slide window goes
through the raw signal. The curve in the second layer is the corresponding
output with the observation states. The last layer shows the corresponding
hidden states.

O = (o1, o2, . . . , oT ) from the bump duration probability
sequence, we estimate the state sequence I = (i1, i2, . . . , iT )
to achieve the highest probability, that is,

I = arg max
1�t�T

P(O|I), ot ∈ V , it ∈ Q. (5)

Finally, we adopt the Viterbi algorithm [25] to derive the best
state sequence.

B. Bump Placement

After detecting the bump-passing states for each driver,
we further extract its bump duration and estimate its location
on the map.

1) Signal Extraction: According to the bump duration prob-
ability, we calculate the start and end time of the bump signal.
If there are continuous windows that go through a bump signal,
we use the first window to calculate the start time of the bump
signal, and the last one calculates the end time. Suppose that
the start time of the first window is t , the length of this window
is l, and the bump duration probability is p, then we calculate
the start time of the bump signal segment by t + l · (1 − p).
The end time calculates similarly, with the formula: t + l · p.

2) Placement: Since we collect both inertial data and GPS
locations as inputs, we segment the bump signal over its dura-
tion and place its sequence on the map. Instead of computing
its center point as the bump location, we choose the peak point
of inertial data as its location, which is resilient and robust to
inertial noises.

VII. EXPERIMENT AND EVALUATION

A. Datasets

Two kinds of datasets are adopted to support our experiment
and evaluation: dedicated data and crowdsourced data. Differ-
ences exist in labeling status, data sources, usages, evaluation
contents, and so on. Details for our datasets are shown in
Table I.

1) Dedicated Data: These data are collected and labeled
carefully. The collection steps are as follows.

1) We develop an application that can collect data from
built-in hardware (accelerometer, gyroscope, GPS, etc.)
in a smartphone. The data will be stored in a specific
format in local storage in real-time.

TABLE I

DATASETS INFORMATION

2) In order to collect and label bump signals, we use two
smartphones to gather the inertial signals and manu-
ally mark (click on the screen) the GPS position of
bumps, respectively. The reason for using two smart-
phones is that the click event may involve extra inertial
fluctuations. In addition, the timestamp synchronization
between two smartphones is only acquired to associate
inertial signals to bumps, which is acceptable within 1-s
errors.

3) We collect data for drivers with different driving habits
(some driving rough, some driving smooth). These data
are stored independently in units of trajectory.

4) We manually annotate the beginning and ending
timestamps of each bump signal in all data.

In virtue of the fine annotated, dedicated data can sup-
port the training of models and most experimental contents.
However, the inevitable problem is that this part of data has
a quantitative disadvantage. For this reason, we introduce
crowdsourced data.

2) Crowdsourced Data: Our large-scale real-world crowd-
sourced dataset is collected by the DiDi platform. The amount
of data is large while the quality is not high. The data is
divided into trajectories, and each trace represents the track
of a vehicle in a continuous period. However, it is hard to
annotate crowdsourced data like dedicated data, and we even
do not know the ground truth of crowdsourced whether they
go through bumps. So, we design a method to count all the
bumps a trajectory passes through, which we will describe in
detail in Section VII-C2.

3) Information of Bumps: Based on bump material and
road condition, we have classified six common types of speed
bumps.

From a view of material, we identify three types of bumps:
rubber bumps, metal bumps, and cement bumps.

1) Rubber bumps trigger slight noise and strong shock
absorption when vehicles passing by and easily to be
damaged. It is the most common speed bumps on low-
speed roads.

2) Metal bumps provide long service life and satisfactory
damping effect and are ordinary on all kinds of roads
including highways.

3) Cement bumps are low cost, compression resistant,
difficult to deform, but provide poor shock absorption.

From a view of road conditions, we also identify three types
of bumps: on a straight road, at a road turning, and along a
slope.
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TABLE II

INFORMATION OF BUMPS

Fig. 12. Data format.

1) On a straight road: it is the most common road condition,
where vehicle’s two front wheels pass the bump at the
same time, then comes two rear wheels.

2) At a road turning: we observe that vehicle’s two front
wheels roll over successively, but its two rear wheels
generally pass at the same time.

3) Along a slope: it is not a general bump but consists of
continuous embossing stamps to remind drivers to slow
down. In addition, they exist more on downhill rather
than uphill.

We add these definitions to the bump database and count
the quantity of each type. The statistical result is shown in
Table II.

In Table II, Quantity represents the number of each bump
type, and # Signals represents the count of bump signals.
Since vehicles may pass the same bump for multiple times,
the values of # Signals are more than that of Quantity.

B. Data Processing

There are three parts for data segments during data collec-
tion, including the time stamp, GPS records, and inertial data.
Detailed data format is shown in Fig. 12.

1) GPS Records: GPS records contain the vehicular
location (longitude and latitude) and orientation (bearing):
1) since the sampling rate (1 Hz) of GPS is always lower
than that of the inertial data (50 Hz), we perform 1-D linear
interpolation operations on the GPS sequence to attach the
location information on each frame of inertial data and 2) the
bearing value is calculated via vehicle’s movements, and it
will be Null if the vehicle stops. Thus, we pad such missing
values with its nearest available neighbor.

2) Inertial Data: We exploit the acceleration variation along
gravity direction to identify the bump signal. However, there
are several technical challenges when collecting such data in
practice.

1) The sampling disturbances. Since it is difficult to main-
tain the same sampling frequency for all sensors, we re-
sample and interpolate them at the fixed frequency
of 50 Hz.

Fig. 13. Coordinate system transformation from the phone to the vehicle.

2) The phone’s arbitrary placement in car. Although we
could transform the 3-D movement from phone’s coor-
dinate system to that of the vehicle (see Fig. 13),
we observe that the acceleration along gravity direction
is the most relevant signal, thus we leverage the gravity
API to extract the acceleration along vehicle’s z-axis for
efficiency.

C. Evaluation Metrics and Methods

To evaluate the performance of our methods, four indicators
will be used: precision, recall, F1-score, and IoU [26]. As we
compare the prediction results obtained from the method and
the ground truth, precision can tell us whether the prediction
result is correct, recall indicates that the proportion of bumps
we miss found, and F1-score, which is a balance metrics of
precision and recall can generally reflect the comprehensive
performance of the method

Precision = TP

TP + FP

Recall = TP

TP + FN

F1-score = 2TP

2TP + FP + FN
. (6)

In addition, our method can find out the signal segment of
bumps, we bring in IoU which can measure the accuracy of
bump signals extraction.

1) Evaluation Metric of Signal Extraction: This evaluation
method is suitable for dedicated data. For manually labeled
data, we know the truly start (Sgt) and end (Egt) time of the
bump signal. When we extract the signal by the algorithm,
that is, we get the start (Spred) and end (Epred) time of the
bump signal, we can calculate the metrics. A predicted bump
is regarded as TP, which means its (Spred, Epred) overlap with
the corresponding (Sgt, Egt). FP means that no overlap. If any
bump in the ground truth fails to find the corresponding one
in the prediction, the count of FN will increase. For all the
bumps, we calculate the IoU to evaluate the accuracy of signal
extraction

IoU =
(
Sgt, Egt

) ∩ (
Spred, Epred

)

(
Sgt, Egt

) ∪ (
Spred, Epred

) . (7)

The higher the value of IoU, the better the algorithm would be.
2) Evaluation Metric of Position: Since our ultimate goal

is to obtain the specific location of the bump, we directly
evaluate the position of bumps predicted by the algorithm.
The core criterion for TP is that the predicted position and
the ground-truth position can match (distance between them
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Fig. 14. We estimate the list of bumps that a trajectory has passed. The
ground-truth position of bumps is stored in the database. For example, the
bump list of this trajectory is [bump2, bump3].

TABLE III

PERFORMANCE OF DIFFERENT FEATURE DOMAIN

is small). Considering that two adjacent bumps are easy to
mutual interference, we set the distance threshold to 5 m and
take the vehicle driving direction as the constraint. Therefore,
we record longitude and latitude together with the direction
when constructing a bump database. It is worth mentioning
that in this case, a bump may be divided into two when it
crosses lanes with opposite driving directions. Although this
makes data increase, the accuracy improves.

In addition, we can calculate which bumps that a trajectory
has passed through the position information (GPS). An exam-
ple shows in Fig. 14.

If we know the accurate information of the bumps (tra-
jectory pass-through), we can evaluate whether the bumps’
position predicted from sensor data are correct. Therefore,
we implement an algorithm to retrieve every bump in a
trajectory via the bump database. The information of bumps
is stored in chronological order. However, this method aims at
a single trajectory. For crowdsourced data, our goal is to find
out all bumps in an area through all traces. Therefore, in the
experiment, we will explore the adaptability of the algorithm
on crowdsourced data from an overall perspective.

D. Experiments

In this section, we design some experiments to discuss or
evaluate our methods in different aspect.

1) Feature Domain: To explore more efficient features,
we conduct comparative experiments on features of differ-
ent domains. We extract features of each domain to train
a model and evaluate them separately. Results are shown
in Table III. We can find that the time domain obtains
the best results. It shows that our learning target is more
dependent on features in the time domain. The extraction of
time-domain features has the least computationally expensive,
which can show the superiority of our algorithm to some
extent.

Fig. 15. Performance of different window size. The size of the window is
set from 1 to 4 s.

TABLE IV

SETTINGS OF SLIDING WINDOW

2) Sliding Window: We experimented on the performance of
different window sizes. A smaller window will seize the small
vibrations so that sensitively detect fluctuation signals, which
leads that the model will recognize more fluctuation signals
as bumps. Therefore, the precision got a worse performance.
A larger window contains more information of signal obtains
a better performance in precision. But this will also cause
to ignore some tiny vibrations so that recall will descend.
The effect of different window sizes on the accuracy of bump
recognition is shown in Fig. 15.

From Fig. 15, we can find that with the increase of the win-
dow size, the precision result increases and recall decreases,
which is in line with our expectations. The window size
selected between 1.5 and 2 s can achieve better performance.

In our design, there are two types of sliding windows, that
is, signal clustering and signal recognition. The setting of these
parameters is empirical: 1) in signal clustering, a small time
window is set to capture tiny vibrations, and a low cover rate to
reduce the computation and 2) in signal recognition, we set a
larger time window to ensure the accuracy of feature extraction
and use a larger cover rate to improve the model robustness.
The setting details are shown in Table IV.

3) Hidden Markov Model: To prove the robustness of
HMM, we use the threshold method instead to predict whether
the vehicle passes the bump. By setting a threshold, we can
pick out all the fragments whose bump duration probability
exceeds this threshold and regard them as the passing state.
Other settings remain the same. Results are shown in Fig. 16.
To achieve a high performance of the method of threshold,
we should adjust the value repeatedly. Even so, its effect is
still not as good as the method of HMM.

4) General Model and Personalized Model: We design
experiments to evaluate the performance of the personalization
model. First, we divided the dedicated datasets into three
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Fig. 16. Comparison of using HMM and threshold. We observe that the
method of using HMM has a better performance.

TABLE V

PERSONALIZATION

parts: one for training a general model, one for processing
a personalized model, and the last for testing. Furthermore,
there should be a user correspondence between datasets of
training personalized model and testing. These two datasets
are collected by the same drivers in two areas so that one area
for personalizing and the other one for testing. After training
a general model, we fine-tune the model by personalized data
generated by the method described in Section V for every user.
Table V shows the performance of personalization.

From Table V, we conclude that the accuracy of bump
recognition after personalization is better than the accuracy
from the general model. In addition, we trained a personalized
model without a general model, whose results are shown in the
second line in the table. We found that even though its results
are not necessarily better than the results of the general model,
and it still gets a good performance, which fully shows that the
generation of our personalized data is very useful. At the same
time, combined with the further tuning of the general model,
the best results were obtained, indicating the effectiveness of
our method.

However, results in Table V only show the average of
all users. We also want to know whether, for each user,
a personalized model can be better than a general model. So,
we randomly select four users and then list out their results
before and after having a personalized model, as shown in
Table VI.

Table VI shows that the personalized model can be accurate
for each user.

5) Crowdsourced: If dedicated data is to evaluate the per-
formance of our method, then crowdsourced one is to measure
the feasibility of our system in real scenarios. The basis for
evaluating crowdsourcing data is a bump database we built.

TABLE VI

PERSONALIZATION RESULT FOR INDIVIDUAL USER

In such a database, we collect almost all bumps in an area
with their GPS information include only three elements for
each: longitude, latitude, and orientation. Therefore, we can
evaluate the inference result by position.

First of all, we inference each trajectory separately and make
statistics of their results. The inference results record in the
unit of trajectory. If a trace has passed no bump, then we do
not record anything for it.

Since the bumps that the trajectory theoretically pass can
obtain from processing the GPS information, we compare the
estimation results and the inference results. Here, we have
two ways for comparison: 1) comparing by every trajectory
or 2) comparing in an overall perspective. The first way can
show that the accuracy of every trajectory and the second way
demonstrates whether our method can find all bumps in an
area. However, we found that it is unavailable. The main
reason is that many drivers will deliberately bypass the edge
of the speed bump to reduce vehicle turbulence, which causes
no fluctuation signal in the sensor data.

To this end, we evaluate our result from a macropoint of
view: whether we can find out all the bumps that should be
gone through in theory by all these trajectories (Recall) and
whether a bump recognized from sensor data is truly existing
(Precision). For example, if we have a set of crowdsourced
data, according to the GPS estimation matching, they have
gone through ten bumps (repetitive bumps count as one), but
bumps we found from the inertial data are 9, so the recall is
regarding as 0.9. And a total of 100 bumps are inferred from
inertial data, but only 70 of them can match in the database,
the precision is equal to 0.7.

a) Results of crowdsourced: We randomly select 200 tra-
jectories passing through an area and then utilize a general
model to conduct inference. The precision is 0.75 and the
recall is 1. The recall achieve to 1 means that all bumps are
discovered by these trajectories. But the low precision means
that although we found all bumps, we also identify some
non-bump points as bumps. We try to analyze these wrong
classification points, so we mark all the identified bumps on
the actual map, as shown in Fig. 17.

From Fig. 17, we can intuitively find that the bad results
can be divided into two categories: model inference error and
GPS position offset. It is hard to handle the GPS offset, but
improving the recognition ability of the model is feasible,
which is the core role of model personalization. We train
a personalized model for each trajectory and then evaluate
again. The precision increases to 0.809 at this time proves
that the personalized method we proposed is still effective
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Fig. 17. Bumps recognized from crowdsourced sensor data. The red dot
represents TP, which means that the predicted one has a match in database.
On the contrary, the black star means an FP which has more than 5-m distance
from the ground truth.

Fig. 18. Variation of recall versus time.

in crowdsourcing data. It is worth mentioning that we can
also find that most of the misjudgment points are scattered
separately, and the correct points cluster together, which means
that we can further improve the precision by adding a simple
filter.

b) Recall versus time: When we try to use crowdsourced
data to find all bumps in an area, we naturally pay attention to
how much data is needed to seek all the bumps. In other words,
when we can stably collect the sensor data of all vehicles
passing through an area within a certain period, how long will
it take to find all the bumps in this area? With the help of
big data on the ride-hailing platform, we experimented on the
changes of recall versus time. We selected different periods for
testing and averaged the results, and the change curve is shown
in Fig. 18. According to statistics, about 80 online ride-hailing
cars pass the selected area every hour during the working day.
As shown in Fig. 18, it took about 2.5 h for the recall curve
to converge to 1. But, in fact, the recall has reached 80% at
75 min. The slow rise in the second half of the curve is since
some bumps are relatively off-center and few passing vehicles.

Fig. 19. Signals generated by different types of bumps. These signals collect
from the same driver. (a) Signals of different materials. (b) Signals of different
roads.

TABLE VII

RESULT FOR DIFFERENT TYPES OF BUMPS

6) Types of Bumps: In this part, we explore the impact of
bump types on detection accuracy. Specifically, we illustrate
the raw inertial signals by different bumps and present our
recognition robustness.
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TABLE VIII

TECHNICAL COMPARISON OF EXISTING WORK

TABLE IX

COMPARISON OF ACCURACY

Fig. 19 shows the raw signals by different bumps.
In Fig. 19(a), we can find that rubber and metal bumps are
similar in signal shape as cars pass. When driving through
cement bumps with poor shock absorption, vehicles go much
slower, and there are more pronounced fluctuations in the
signal. Therefore, our model achieves perfect recognition
accuracy at cement bumps. In Fig. 19(b), we observe that a
bump on straight roads usually causes two signal fluctuations
by front and rear wheels, while a bump at turning causes
continuous vibrations. In addition, the bumps on downhill
slopes are the most special with long-term slight shakes.

Table VII shows the detection accuracy on different types
of bumps. Recall stands for accuracy against missed bumps,
which assesses the model’s robustness to identify different
types of bumps. The results have shown that our model can
effectively adapt to different types of bumps, on both recall
and IoU.

E. Comparison

We compare our system with some existing works.
Although there has been a lot of work to detect road anomalies,
there are differences in the datasets and evaluation criteria,
so it is of little significance to compare directly according to
the results in the articles. We list some classical works with
their details in Table VIII. Since most of the work has no
open-source code and dataset, we can only try to reproduce

some methods in their articles and use our data and evaluation
criteria for evaluation. A comparison of accuracy results is
shown in Table IX. We can find that the threshold gets the
worst performance, even though we try sets of parameters.
The DTW depends on the selection of the pattern and the
segmentation data. Furthermore, we use SVM for binary
classification. Although the result is not bad, it is still not
as good as our PBS.

VIII. CONCLUSION

In this article, we identify road bumps by crowdsourced
smartphones inside vehicles. Specifically, we design a novel
signal recognition method to eliminate the diversity of bump
duration during driving. We also explore a personalized train-
ing and inference mechanism to extract individual’s bump
signal and record their locations on the map. Extensive experi-
ments in large-scale real-world datasets have demonstrated our
effectiveness.
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