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With thewide application of vehicular location-based services, precise estimation of the
travel time plays a crucial role in intelligent transportation systems, such as driving
navigation, trafficmonitoring, and route planning. Recentmethods havemade
significant progress on public datasets, but are not satisfied for current ride-hailing
platformswith complex road network topology and dynamic traffic fluctuation. In this
article, we propose an end-to-endDeep Fusion framework for Travel Time Estimation,
which exploitsmultisource heterogeneous traffic informationwithin an encoder–
decoder architecture. Specifically, we explore a relational fusion network to learn the
relationship of road link segments, and employ an attentionmechanism to capture
efficient correlations among spatial and temporal features. Extensive experiments have
been conducted on two large-scale real-world traffic datasets collected byDiDi
Corporation (DiDi) platform, and the results have demonstrated our effectiveness
comparedwith the state of the art.

Travel time estimation is pivotal to many vehicu-
lar location-based services such as ride-hailing,
vehicle dispatching, and route planning. It not

only helps drivers to schedule their trips for better effi-
ciency, but also provides on-demand pick-up services
for passengers with better travel experience. An exam-
ple of travel time estimation on Google map is shown
in Figure 1. Given an origin, destination, and departure
time, it can predict the riding duration along different
paths. Therefore, a series of efforts for travel time esti-
mation have been undertaken in ride-hailing plat-
forms, e.g., Uber, Lyft, and DiDi.

The existing methods on travel time estimation are
mainly divided into two categories. One is road seg-
ment-based approaches,1,2 which mainly focus on pre-
dicting the travel time on each road segment, then
calculate the total time aswhole duration time of the ori-
gin-destination path. However, these approaches suffer
from accumulated errors in prediction, especially in road

intersection and traffic lights. Another is the deep learn-
ing approaches,3–6 which exploit neural networks to cap-

ture the spatial and temporal correlations in traffic

scenarios. Specifically, DeepTTE4 captures the spatial-

temporal relationship based on convolutional neural

network (CNN) and long short-term memory (LSTM) via

GPS trajectories. Compared with the existing methods,

we jointly explore road network topology and road char-

acteristics (e.g., length, width, road class) to capture the

spatial correlations. We also involve temporal features

to estimate the travel time on road link sequences with

amultitask learningmechanism.
Due to the GPS signal drift and the strong spatial

correlation of road network topology, in this article,
we propose the Deep Fusion framework for Travel
Time Estimation (DFTTE), which fully exploits road net-
work topology, road characteristics, and extrinsic con-
textual information. Such a data fusion approach
entails a series of nontrivial challenges, e.g., how to
learn the road network in urban cities, and represent
the spatial relationship and dynamic traffic of adja-
cent road segments.

To deal with the above challenges, our contribu-
tions include the following.
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1) We propose a relation learning framework on
road network to model the hidden topological
dependency, which jointly explores the topology
and road characteristics to learn the spatial rep-
resentations of road segments.

2) We design an attention-based encoder–decoder
module to fuse spatial and temporal correlations
for capturing the spatio-temporal dependency.
In addition, we explore an attention-based multi-
task learning structure to calculate the impor-
tance for travel time estimation on both global
path and local road segments.

3) We conduct extensive experiments on two large-
scale real-world traffic datasets in Beijing and
Shanghai, collected by the DiDi ride-hailing plat-
form. Experimental results have demonstrated our
effectiveness comparedwith the state of the art.

RELATEDWORK
Travel Time Estimation
The existingmethods on travel time estimation aremainly
classified into two categories, one is road segment-based
methods and another is deep learningmethods.

The road segment-based approaches1,2 predict the
transit time during each road segment separately, and
then sum them up as the total riding duration of the
entire path. Although these methods are effective in
some traffic scenarios, they always cause cumulative
errors, especially at intersections of adjacent road links.

The deep learning methods3–6 feed the whole route
into prediction model for producing travel time. Specifi-
cally, DeepTTE4 utilized a multitask learning framework
for travel time estimation on subpaths and entire path.
DeepSTTE5 leveraged the classical convolution layer and
temporal convolutional networks (TCN) to estimate the
short-term travel time based on taxis’ historical trajecto-
ries. Tensor-CNN-LSTM (TCL)6 proposed a Tensor-CNN-
LSTM framework to extract travel speed from historical
sparse trajectories and predicted the travel time of a
given path. ConSTGAT7 proposed a spatio-temporal
graph attention mechanism to exploit the relations of
spatial and temporal information. HetETA8 combined

the gated convolution and graph neural networks to cap-
ture the correlations in spatial temporal information.

In practice, the traffic status on each road link is
jointly affected by all adjacent road links. Compared
with the existing methods, we learn the topology of
surrounding road links instead of the ones only along
the route. To explore hidden spatial correlations, we
effectively model the in/out-link matrix of each road
segment, and fuse them with a mask mechanism to
learn the correlation of road network topology.

Spatial-Temporal Correlations
In spatial and temporal forecasting, employing deep neu-
ral networks and graph neural network to model the spa-
tial-temporal correlations has achieved a significant
improvement. Graph Laplacian Regularization method9

generates the similar representations as adjacent road
links in road network topology. Graph convolution net-
works (GCN)10 builds the adjacent matrix and feature
matrix to model graph data. GWN11 captured spatial and
temporal correlations by combining graph convolution
with dilated causal convolution. DC-STGCN12 proposed a
dual-channel based GCNs for network traffic forecasting.
GraphSAGE13 is a general inductive framework that lever-
ages node feature information to generate node embed-
dings for previously unseen data. Relational Fusion
Network (RFN)14 is a type of GCN for leveraging the road
network structure in road segment classification.

Considering the road segments adjacent relation-
ship in traffic scenarios, we proposed the relation lean-
ing, which by building and multiplying road network
adjacent matrix, in-links and out-links adjacent matrix,
to capture the road segments spatial correlations.

PRELIMINARIES
In this section, we present several important defini-
tions in travel time estimation.

Definition 1 (Road Network): We denote a road net-
work as a directed graph G ¼ ðV;E;A; FGÞ. Here, V is
set of nodes (road links) and E is the set of edges (con-
nectivity between road links) in the graph. A 2 RN�N is
a adjacency matrix, where N is the number of nodes
and Aij is a binary value representing whether two link
segments are connected. FG 2 RN�D represents the
feature matrix of each road segment, where D indi-
cates the feature dimensions of road segments. Given
node v, v 2 V, we define h0

v as its fixed node features,
including its length, width, direction, road class (high-
speed/city/country), number of lanes, and speed limit.

Definition 2 (Trajectory and Path): A trajectory T

consists of a sequence of GPS points. Each point

FIGURE 1. Travel time estimation from Google map based on

the given origin, destination, and departure time.
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contains the timestamp pt, latitude plat, longitude plng,
and road link index pi. The road link index indicates
road segment on the map, e.g., T ¼ ðpt; plat; plng; piÞ. A
path P is represented by a sequence of connected
road links based on trajectory T .

Definition 3 (k-order neighbors): A road link ri is a
k-order neighbors of rj, if the two road links are con-
nected via k intersections in the shortest path among
them. For example, in Figure 5, the direct adjacent
links of current-link are in-link and out-link, which are
called 1-order neighbors of current-link.

Travel Time Estimation: Given a query q ¼
ðoq; dq; tqÞ, where oq is the origin of query, dq is the des-
tination of query, tq is the departure time, and our aim
is to estimate the travel time based on historical tra-
jectory datasets and underlying road network.

PROPOSED APPROACH
The overall architecture of DFTTE is presented in
Figure 2. It mainly consists of deep fusion framework
and encoder–decoder structure. Specifically, we jointly
explore the road network topology and the road charac-
teristics (e.g., length, width, road class) to capture the
spatial correlations based on relation learning method.
Then, we combine the temporal features and contextual
information to estimate the travel time on road link
sequences withmultitask learningmechanism.

Deep Fusion Framework
The deep fusion framework mainly focuses on captur-
ing the spatial dependency with considering the

underlying road network topology. It mainly includes
the extrinsic contextual information and relation
learning components. The details are as follows.

Extrinsic Contextual Information
Travel time is affected by extrinsic contextual informa-
tion in daily transportation, such as weekdays, week-
ends, and weather conditions.

First, Figure 3 shows the comparison of travel time
during one week. We observe that there is a com-
mon tendency and periodicity of general working
hours formost residents in traffic scenarios. As shown in
Figure 3, there is a consistent rise of travel time at
7–9 a.m. and 5–7 p.m. during weekdays, but it remains
almost stable atweekends.

Second, in Figure 4, we visualize the travel time with
different weather conditions, one is cloudy and another
one is shower. It depicts the effects of two frequent
weather conditions in summer for travel time estimation.
The red line represents the average travel time

FIGURE 2. Overview of DFTTE. We explore a deep fusion framework and an encoder–decoder structure to learn spatial-temporal

correlations for travel time estimation.

FIGURE 3. Travel time fluctuation of weekdays and

weekends.
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fluctuation of weather from cloudy to shower, then to
cloudy in one day. The red dotted line indicates the
shower. We observe that the shower increases travel
timewithmore than 60 s compared to cloudy.

However, since these contextual information is a
binary value, it cannot be directly fed into the deep
learning model. Therefore, we employ an embedding
method4 to transform the contextual features into
low-dimensional feature vectors as Vcf . In our experi-
ment, we embed the day of the week to R7, weather
condition to R6, and holidays to R2.

Relation Learning
Travel time is also strongly affected by underlying road
network topology, especially among adjacent road
links. For example, as shown in Figure 5, the satellite
image of three adjacent road links within one route in
Beijing. We denoted as the in-link, out-link and current
link, respectively.

To verify the effect of adjacent road links, we have
collected average travel time of each road link, and
then visualized the travel time fluctuation in Figure 6.
Specifically, the x-axis is time in one day, the y-axis is
the range of average travel time. When a congestion
occurred in out-link, it would also affect its upstream
sections, such as current-link and in-link. Therefore,
we propose a relational fusion method to capture spa-
tial correlations of each road link.

Specifically, given road network graph G ¼ ðV;EÞ,
we utilize K aggregator functions (denoted as
AGGREGATEk, 8k 2 f1; . . .; Kg) to aggregate infor-
mation from adjacent nodes, and the learning weight
matrices Wk, 8k 2 f1; . . .;Kg to propagate information
from different layers. Note that the k also indicates
k-order neighbor road links and the representations of
k ¼ 0 are defined as the input node features. We pres-
ent the flowchart of the relation learning algorithm in
Figure 7. The gray blocks indicates the four steps to
learn the spatial correlations (from i) to iv)).

We first present the experimental parameters in
Table 1 to improve the clarity.

Then the details are as follows.
i) We model the relations of each road segment

based on road network topology. Specifically, we build

FIGURE 4. Comparison for different weather conditions.

FIGURE 5. Adjacent road links in one route.

FIGURE 6. Fluctuation of traffic congestion among adjacent

road links.

FIGURE 7. Flowchart of the relation learning algorithm.

TABLE 1. Experimental parameters.

Parameters Description

h0
v The node features of node v

hk
in=out The hidden feature vectors of the k-order

in/out-links neighbors

Mk
in=out The k-order in/out-link adjacent matrices

Fin=out The in/out-link feature matrices

W � The learnable weight matrices

zv The final representation of road link v
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the k-order in/out-link matrices Mk
in=out for each road

segment according to its adjacent road links, and then
combining the feature matrices Fin=out to obtain the
formalization k-order hidden features of in/out-links
hk
in=out by fully connected layers (FCLs) as follows:

hk
in ¼ sðMk

in � FinÞ (1)

hk
out ¼ sðMk

out � FoutÞ (2)

where s is activation function, and Fin and Fout repre-
sent the feature matrix of in-links and out-links, i.e.,
length, width, direction.

ii) We extract the k-order neighbor road links of
current road segment by kth layer to attain the repre-
sentation of neighbors. Each road link v aggregate the
representations of road links in its k-order neighbor-
hood NðvÞ to the neighborhood vector hk

NðvÞ, which is
generated in previous iteration:

hk
NðvÞ ¼ AGGREGATEkðfhk�1

u 8u 2 NðvÞgÞ (3)

where hk�1
u means the hidden feature vector of

ðk� 1Þ-order neighbors with k� 1 layers for road link u

in NðvÞ.
iii) We concatenate the current road link’s repre-

sentation hk�1
v and its aggregated neighborhood vec-

tor hk
NðvÞ, then feed it into FCLs with a nonlinear

activation function s for the representations of the
next step such that

hk
v ¼ sðWk � CONCATðhk�1

v ; hk
NðvÞÞÞ; k � 1 (4)

where CONCATð�Þ is a concatenate function with
specified dimension, and s is a nonlinear activation
function.

iv) We design a relational fusion method to cap-
ture spatial correlations. Specifically, we take the in/
out-links hidden feature vectors and road links vector
into (5) for final representation of road link v, which is
calculated as zv (i.e. Vsf ):

zv ¼ sðWvhk
v þW inhk

in þW outhk
out þ bÞ (5)

where s is a nonlinear activation function, and hk
v indi-

cates the representation of k-order’s road link v. Wv is
the current road links weight matrix, W in=out is in/out-
links weight matrices, and b is a bias term.

In order to learn effective representations, the rela-
tion learning applies a graph-based loss function JðzvÞ to
ensures the similarity of adjacent road links and distinc-
tion among disparate road links. Compared with previ-
ous embedding approaches, the road link representation
zv in this loss function is generated from the features
contained within the neighbor road links, rather than an
independent embedding for each road link.

JðzvÞ ¼ �logðsðz>v zuÞÞ �Q � Eun�PnðuÞlogðsð�z>v zuÞÞ
(6)

where u is a road link that co-occurs near v on k-order
neighborhoods, s is the sigmoid function, Pn is a nega-
tive sampling distribution of neighbor road link set of
un, and Q is the number of negative samples.

Encoder–Decoder Structure
In this section, we integrate multisource features to
estimate the travel time. Specifically, Vsf is spatial cor-
relation features based on relation learning, the tem-
poral correlation features Vtf are comprised of
historical traffic speed and travel time on each road
segments at different time slots of day. Specially, we
divide one day into 720 timeslots with 2-min time step.
In addition, we encode the day of week, holidays,
weather information as the extrinsic contextual fea-
tures Vcf . Then, we fuse them as Vall to learn the spatial
temporal dependency

Vall ¼ Vsf k Vtf k Vcf (7)

where k is a vector concatenation operation.
Moreover, we explore the attention mechanism

and multitask learning to improve the predictive accu-
racy. The details are as follows.

Encoder Component
In application of learning time series, it has been dem-
onstrated that a stacked GRUa is effective to boost
the generalization ability.15

To learn the temporal correlations among different
local paths, we utilize two layers of GRU as the encoder.
It aims to learn the hidden long- and short-term temporal
correlations basedonhistorical trafficdata. Given a fused
feature sequence X ¼ ðx1; x2; . . .; xT Þ, the GRU learns a
mapping from xt to ht at time step t. Specially, xt ¼ V t

all,
represented as an input feature at time step t, i.e.,

ht ¼ GRUðht�1; xtÞ (8)

where ht�1 is a hidden state of the GRU at time step
t� 1.

Attention Mechanism
To model the dynamic correlations of spatial and tem-
poral features, we utilize the attention mechanism4 to
learn weights in different traffic conditions.

The spatial and temporal attention mechanism is
the weighted sum of fused feature Vall, i.e., the final

a[Online]. Available: htt_ps://www.worldcat.org/title/deep-learning/
oclc/955778308
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features hall is calculated as

hall ¼
X

j

aj � hj (9)

where aj is an attention weight for jth hidden feature
of local path, hj is the hidden feature of local path in
GRU, and the sum of attention weight is

P
j aj ¼ 1.

In addition, the attention weight aj is calculated as

zj ¼ ReLUðWj � hj þ bjÞ (10)

aj ¼ expðzjÞP
j expðzjÞ

(11)

where Wj is a weight matrix, and bj is a bias item in
attention mechanism.

Decoder Component
We predict travel time with a multitask learning struc-
ture. Its input includes the time relevant features on
local paths and the global path. We feed it into FCL:

o ¼ ReLUðW ðoÞ
i hallÞ (12)

whereW
ðoÞ
i is the parameter matrix in ith FCL layer.

Multitask Learning Component: In the training
phase of our DFTTE model, we exploit the attention-
based multitask learning mechanism. We calculate
the different weights for local road segments to learn
the spatio-temporal correlations. It not only estimates
the travel time of each local path, but also predicts
the overall time along the global path. In the test
phase, DFTTE skips local paths and predicts the travel
time for the global path directly.

Loss Function: During the training phase, we
employ mean absolute percentage error (MAPE) as
our objective function for global path and local paths
in travel time estimation. Given a training dataset D,
the loss function of the global path Lg is calculated as

Lg ¼ 1

N

X

i2DN

jŷDi
� yDi

j
yDi

(13)

where Di indicates the ith training sample, N is the
number of training samples, yDi

is the ground truth for
global travel time, and ŷDi

denotes the prediction.
For local paths, the loss function Ll is calculated as

Ll ¼ 1

N

X

i2DN

X

j2n

jŷ
D
j
i
� y

D
j
i
j

y
D
j
i

(14)

where n denotes the total number of road links in each
Di training sample, ŷ

D
j
i
denotes the estimate travel

time, and y
D
j
i
is the ground truth of jth link segment in

local path. We set the loss function of our model as L

in the following equation, which combines the global

path Lg and local path Ll with a tradeoff combination
coefficient b.

L ¼ bLg þ ð1� bÞLl: (15)

EXPERIMENTS
In this section, we evaluate the performance of DFTTE on
two large-scale real traffic datasets fromDiDi ride-hailing
platform. Specifically, we first ensure the effectiveness of
relation learning in (6), and then, we adopt (15) to opti-
mize our travel time estimation model with both local
road segments and global path in training phase.

Experimental Data Description
Our experimental datasets are gathered in Beijing and
Shanghai. The time period is fromAug. 6 to Aug. 26, 2018.

The dataset mainly contains GPS trajectories, road
network, and contextual information (like weather condi-
tion, holidays, etc.). Owing to GPS signal drift, we first uti-
lize theMapMatching algorithm16 tomapGPS points into
road network, and then extract road link sequences of
path from trajectories. Meanwhile, the data range of dif-
ferent road network attribute features is not specific, so
we utilize Z-score to normalize it in data preprocessing.
Table 2 shows the statistics of the experimental datasets.

Experimental Settings
In experiment, we utilize 60% of the data for training,
20% for validation, and 20% for testing. The time step
of traffic datasets denoted as 2 min.b The hidden size
of two stacked GRU is 128, the tradeoff combination
coefficient b in multitask learning component is 0.4. In
addition, various number of adjacent neighbor road
links have different impact on traffic fluctuation. To
alleviate this side effect, we utilize theL2 normalization
to scale it, and build the 3-order matrix with mask
mechanism. During the training phase, we utilize the
Adam optimizerc with a learning rate of 0.001. We con-
duct experiments based on PyTorch deep learning

TABLE 2. Statistics of datasets.

Dataset Beijing Shanghai

Time range 68.6-8.26 2018 8.6-8.26 2018

No. of trajectories 235,172 109,035

No. of nodes (jV j) 8963 6532

No. of edges (jEj) 12537 9716

bWe divide one day into 720 timeslots with 2-min time step.
c[Online]. Available: htt_ps://pytorch.org/docs/stable/generated/
torch.optim.Adam.html
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framework, and train the DFTTE model on a 64-bit
server with NVIDIA GTX 2080Ti.

We evaluate the predictive performance on our
proposed model with three criterions, mean absolute
percentage error (MAPE), mean absolute error (MAE),
and rooted mean square error (RMSE).

Methods for Comparison
To demonstrate the effectiveness of our method, we
compare Ours (i.e., DFTTE) with the following baseline
methods. In addition, we preserve the default experi-
mental settings andmodel framework in original papers.

1) Support vector regression (SVR)17: It is widely
used in sequence prediction based on SVM.

2) XGBoost18: It is a scalable tree boosting system
and widely used on time series prediction.

3) LSTM19: It has been demonstrated the effective-
ness to capture time series information. We utilize
LSTM with two stacked layers and set the hidden
size as 128.

4) DeepTTE4: It utilized a geo-convolution, two
layers of LSTM and attention mechanism to cap-
ture spatial and temporal dependencies for
travel time estimation.

5) DeepETA20: It proposed a wide and deep neural
network with a spatial-temporalmodule to capture
the time series features for travel time estimation.

6) DeepTravel3: It simultaneously extracted spatial
and temporal features and then employs dual
interval loss to leverage the temporal informa-
tion based on bidirectional LSTM.

7) GWN11: It captured the spatial and temporal corre-
lations by combining GCN and gated temporal
convolutionmodule (Gated TCN). Since our fusion

matrix integrates the k-order in/out-links of each
road segment and its attributes for spatial learn-
ing, we use it to replace the self-adaptive adja-
cencymatrix in GWNand denote it as GWN-F.

Experimental Results
In this section, we conduct extensive experiments on
two large-scale traffic datasets in Beijing and Shanghai.
The results of different approaches are shown in Table 3.
We observe that the MAPE value of GWN-F is nearly 2%
lower than original GWN. The DFTTE is nearly 3.5% lower
than GWN on MAPE. Overall, the DFTTE achieves a bet-
ter performance in both Beijing and Shanghai datasets.

In addition, we visualize the model performance in
Beijing dataset from Figures 8 to 12.

Effect of Extracted Features
The ablation study on GPS trajectories and road network
is shown in Figure 8. We can observe that only utilizing
the road network has the high value of MAPE, that is
because some road segments have sparse GPS trajecto-
ries. As a result, our method achieves a lower value with
considering the spatial and temporal correlations.

TABLE 3.Mean and standard deviations of different approaches for travel time estimation in Beijing and Shanghai.

Methods Beijing Shanghai

MAPE(%) MAE (s) RMSE (s) MAPE (%) MAE (s) RMSE (s)

SVR 30.25 � 0.00 282.6 � 0.00 532.8� 0.00 36.15 � 0.00 377.5 � 0.00 605.7 � 0.00

XGBoost 28.12 � 0.00 266.6 � 0.00 464.3 � 0.00 31.43 � 0.00 348.6 � 0.00 556.2 � 0.00

LSTM 27.92 � 0.21 264.3 � 1.57 457.6 � 1.83 29.25 � 0.15 321.3 � 1.39 512.3 � 2.17

DeepTTE 21.38 � 0.09 227.5 � 1.39 426.4 � 2.15 25.21� 0.19 297.5 � 1.85 468.5 � 2.57

DeepETA 23.53 � 0.17 232.4 � 1.15 441.8� 1.68 27.27 � 0.21 306.2 � 1.01 493.7� 2.16

DeepTravel 22.15 � 0.12 228.3 � 1.28 435.7 � 2.11 25.58 � 0.15 299.5 � 2.03 476.3� 2.25

GWN 21.27 � 0.13 235.2 � 0.92 412.5 � 1.29 23.62 � 0.18 291.7 � 1.39 457.6 � 2.01

GWN-F 19.75 � 0.08 210.8 � 0.83 384.4 � 1.58 21.35 � 0.10 268.2 � 1.12 406.2 � 1.73

Ours 17.32 � 0.11 207.5 � 0.65 346.5 � 1.49 20.26 � 0.08 255.8 � 1.31 372.8 � 1.58

FIGURE 8. Ablation study onGPS trajectories and road network.
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Effect of Attention Mechanism
Attention mechanism calculates different weights to
distinguish the most relevant features. The comparison
results are shown in Figure 9, we can observe that the
value of training MAPE with attention mechanism is
obviously lower than without attention during the train-
ing phase, and the model with attention mechanism
converges faster. With the epoch increasing, the value
first fluctuates in a small range, then gradually con-
verges to a small value, and finally achieves a stable
state. As a result, the attention mechanism is helpful for
improving the prediction performance.

Model Interpretation
In order to investigate the predictive ability of DFTTE,
especially on weekdays and weekends, we set the
time window size as 10 minutes and one hour. We
compare the predictions of the DFTTE with the ground
truth values of one route in the test traffic data via
visualization from Figures 10 and 11 separately. We
analyze the predictive performance from two aspects,
one is long short-term prediction, and another is
extrinsic contextual information.

a) Long short-term prediction:We forecast and visu-
alize travel time at different time intervals to verify the
robustness of proposed model. In Figures 10(a) and 11(a),
we can see that themodel performance on different time
interval. The abscissa is the date in one week, and the
ordinate is the average travel time. The blue line indicates
the ground truth of travel time, and the purple line indi-
cates the predicted result. The shaded box represents
the travel time estimation on weekday (Thursday) and
weekend (Sunday) at different time intervals, separately.
First, for the long-termprediction, we set the time interval
as one hour. The corresponding details are shown in
Figure 10(b) and (c). And we can observe that the model
is robust in capturing the long-term trend of traffic

FIGURE 9. Effect of attention mechanism on Training MAPE.

FIGURE 10. Travel time estimation at an one-hour time interval. (a) Travel time estimation during one week. (b) Travel time esti-

mation on weekday (Thursday). (c) Travel time estimation on weekend (Sunday).

FIGURE 11. Travel time estimation at a ten-minute time interval. (a) Travel time estimation during one week. (b) Travel time esti-

mation on weekday (Thursday). (c) Travel time estimation on weekend (Sunday).
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fluctuation. Second, we set the time interval as ten
minutes for the short-termprediction. The result is shown
in Figure 11. The details of ten minutes prediction are
shown in Figure 11(b) and (c). From the visualization, we
know that the proposed model has the ability of captur-
ing the traffic fluctuation in a short-time interval.

b) Extrinsic contextual information: The transpor-
tation behavior is various under different contextual
information, such as the different traffic patterns on
weekdays or weekends. Therefore, we analyzed and
conducted the experiments on weekdays and week-
ends, respectively. The performances are shown in
Figures 10 and 11. We observe that there is a common
tendency in urban traffic scenarios that the travel
time predictions onweekdays are better thanweekends.
We think this is due to the periodicity of general working
hours for most residents. As shown in Figure 3, there is a
consistent rise of travel time at 7–9 a.m. and 5–7 p.m. dur-
ing weekdays, but it remains almost stable at weekends.
Our model effectively learns spatio-temporal features to
capture the periodic fluctuation of traffic; therefore, it
producesmore precise predictions onweekdays.

c) Hyperparameters: In a multitask learning compo-
nent, we evaluate our model under different tradeoff
combination coefficient b from 0.0 to 1.0 betweenLg and
Ll. The result is shown in Figure 12, When b is 0.4, the
model achieves a lower MAPE with jointly considering
the interaction of local path and global path. When b is 0,
the MAPE value of model is larger than 30%, which lacks
considering the global path relationship and has a cumu-
lative error. And when we set the b as 1, the model esti-
mates travel time without considering the correlations
of local path, so under the situations, the model has a
high value ofMAPE.

CONCLUSION
In this article, we propose DFTTE to learn road network
topology for travel time estimation. It efficiently captures
the spatial and temporal correlations in heterogeneous
traffic data. Moreover, we design an attention-based

multitask learning structure to calculate the weights for
learning the travel time on global and local paths in the
encoder–decoder architecture. We have conducted
extensive experiments on two large-scale real-world
traffic datasets in Beijing and Shanghai, and the
results demonstrate the effectiveness of proposed
method. However, in the future work, there are still
many fields to improve, e.g., enhancing the stability
at the initial training stage, and investigating the
effect of traffic incidents for travel time estimation.
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