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Unsupervised Learning of Monocular Depth and
Ego-Motion in Outdoor/Indoor Environments

Ruipeng Gao , Xuan Xiao , Weiwei Xing , Member, IEEE, Chi Li , and Lei Liu

Abstract—Visual-based unsupervised learning [1]–[3] has
emerged as a promising approach in estimating monocular depth
and ego-motion, avoiding intensive efforts on collecting and label-
ing the ground truth. However, they are still restrained by the
brightness constancy assumption among video sequences, espe-
cially susceptible with frequent illumination variations or nearby
textureless surroundings in indoor environments. In this arti-
cle, we selectively combine the complementary strength of visual
and inertial measurements, i.e., videos extract static and dis-
tinct features while inertial readings depict scale-consistent and
environment-agnostic movements, and propose a novel unsuper-
vised learning framework to predict both monocular depth and
ego-motion trajectory simultaneously. This challenging task is
solved by learning both forward and backward inertial sequences
to eliminate inevitable noises, and reweighting visual and inertial
features via gated neural networks in various environments or
with user-specific moving dynamics. In addition, we also employ
structure cues to produce scene depths from a single image and
explore structure consistency constraints to calibrate the depth
estimates in indoor buildings. Experiments on the outdoor KITTI
data set and our dedicated indoor prototype reveal that our
approach consistently outperforms the state of the art on both
depth and ego-motion estimates. To the best of our knowledge,
this is the first work to fuse visual and inertial data without any
supervision signals for monocular depth and ego-motion esti-
mation, and our solution remain effective and robust even in
textureless indoor scenarios.

Index Terms—Ego-motion, monocular depth, structure cues,
unsupervised learning, visual-inertial fusion.

I. INTRODUCTION

INFERRING monocular depth and ego-motion is the basis
for novel AR/VR features in various Internet of Things

(IoT) systems. For example, it produces high-quality depth
information to inexpensively complement LIDAR sensors used
in self-driving cars [4]. It also enables 3-D object detection as a
new smart payment tool on mobile phones [5] and guides users
to explore indoor locations and avoid obstacles when playing
the Pokémon GO [6]. With more than a decade of research on
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computer vision since the Structure from Motion (SfM) [7],
recent approaches have started to exploit unsupervised deep
learning methods [3], [8], [9] to estimate both depth and ego-
motion from monocular videos. Although they have explored
a variety of object masks and loss functions between consecu-
tive frames to improve the accuracy, one major obstacle to its
ubiquitous availability is the image outliers in specific envi-
ronments, e.g., with frequent illumination variations, nearby
occluded/moving objects, and capturing textureless surfaces.
Thus, its robustness is inevitably low, especially in indoor
buildings, such as manmade tunnels and parking structures.

Additionally, when using the ego-motion network to track
a trajectory, it requires a consistent scale over the entire video
sequence. However, vision-based deep models are always
learned via pairwise stitching, causing the per-frame scale
ambiguity and producing individual scale factors on different
snippets, thus impeding wide adoptions for long-time location
inference.

Inspired by the complementary strengths from different sens-
ing modalities, we explore a visual-inertial fusion approach
that enables the environment robustness of monocular depth
estimates and the scale consistence of ego-motion trajecto-
ries. Especially, visual ones can capture accurate translation
measurements in areas with distinct appearances and proper
illuminations, and can be exploited to calibrate inertial noises;
while the inertial sensor is proprioceptive thus can produce
scale-consistent and environment-agnostic measurements, and
its much higher sampling rate (∼ 100 Hz) is suitable to track
fast movements, such as braking and turning. Thus, we aim
to devise an automatically reweighting strategy, which selec-
tively fuses visual and inertial features according to dynamic
environmental conditions and their specific sensing properties.

The realization of such benefits, however, turns out to be
a nontrivial journey. First, due to inevitable noises and bias
in inertial measurements, we need to calibrate raw inertial
readings and extract the most effective and robust motion fea-
tures, instead of directly conducting integrations for trajectory
tracing. Second, there are numerous extreme environmen-
tal conditions (e.g., illumination variations, occluded/moving
objects, and textureless surfaces) and user-specific moving
dynamics (e.g., fast rotation, sudden brakes, and bump jolting)
in the real-world scenarios, thus our model should automat-
ically select and reweigh the optimal motion features from
different sensing modalities. Third, when driving in indoor
environments, such as manmade tunnels and parking struc-
tures, our surroundings are mainly comprised of white walls
and floors/ceilings with few distinct decorations; thus, even the
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deep neural networks (DNNs) cannot extract sufficient visual
features to align and match similar images.

In this article, we propose a selective visual-inertial fusion
framework with unsupervised learning. It exploits DNNs to
calibrate inertial readings and extract the most effective inertial
motion features, with a monocular camera as the supervised
signal. The inertial features further enhance the ego-motion
network with scale-consistent trajectories and produce more
precise warped frames to supervise the depth network in
extreme environments. In addition, for vehicles in manmade
indoor buildings, we also explore the principle of structure
cues to infer multiple geometric scenes from a single image,
and derive them to calibrate the depth estimates. To the
best of our knowledge on monocular depth and ego-motion
estimation, this article is the first to combine visual and iner-
tial observations within one unsupervised learning framework,
and our solution remains robust even in textureless indoor
environments.

Specifically, we make the following contributions.
1) We devise a recurrent neural network to eliminate

inertial outliers and extract the most effective motion
features from inertial readings. It is trained only with
the unlabeled monocular video sequences within our
unsupervised learning framework.

2) We propose a generic sensor fusion strategy based
on gated neural networks, which selectively com-
bines complementary sensing modalities and produces
environment-robust and scale-consistent ego-motion tra-
jectories. It, in turn, calibrates the transformation of
warped images, thus improving the accuracy of monoc-
ular depth estimates.

3) We explore the principle of indoor structure cues from
a single image and produce corresponding scene depth
information of each pixel point. We further exploit the
scene depth map to calibrate indoor depth estimates by
DNNs.

4) We perform extensive evaluations on KITTI data sets for
outdoor scenarios and develop our dedicated prototype
for indoor scenarios. Our approach consistently outper-
forms the state of the art on both depth and ego-motion
estimates. We also demonstrate the effectiveness of our
ego-motion network for long-time vehicle tracking.

II. RELATED WORK

Supervised Depth Estimation: Learning-based approaches
have shown significant effectiveness to predict the depth
of each pixel on a colorful image. They explore various
supervision signals to infer the depth, including depth sen-
sors [10]–[12], objects with known size [13], sparse ordinal
depths [14], matched appearances [9], and unpaired syn-
thetic depth measurements [15]. However, one major obstacle
to ubiquitous usability is the lack of ground-truth depth
information and environmental annotations. Mayer et al. [16]
investigated the potential of using synthetic training data,
which cannot involve every situation in the real world. Some
recent work [17], [18] employ conventional SfM to yield
sparse training data, where the SfM and learning platforms

are always separated. Thus, the supervised approaches are still
susceptible to camera fluctuations and external disturbances,
especially in complex and dynamic driving scenarios.

Unsupervised/Semisupervised Depth Estimation: While
supervised approaches have demonstrated promising results, the
expense of gathering sufficient ground-truth data prevents them
from ubiquitous practical use. Unsupervised/semisupervised
approaches are explored to solve this problem. Garg et al. [19]
first investigated the geometry constraints between stereo-
cameras as supervision for training a self-supervised network
for depth estimation. Compared to stereo-cameras, monocular
videos are more prevalent in daily life thus are more preferred
for depth estimation. Zhou et al. [8] leveraged a sequence of
image frames taken by a monocular camera and use the con-
straints from adjacent frames as supervision. However, due to
the camera movements, the moving objects in the scene can eas-
ily impact the estimation performance. To solve this problem,
several work [2], [3] leverage image masks to get rid of the noisy
and useless parts. In order to improve the accuracy of depth
prediction, monodepth2 [1] effectively selects the pixels which
are more suitable for loss computation, and UnVIO [20] employ
a loss item on 3-D geometric consistency which is extremely
time-consuming (10× more) to construct the point cloud thus
we remove it for efficiency. Since monocular video-based depth
estimation is closely related to the camera movement, jointly
estimating both depth and ego-motion is a more nature way
to improve the performance. To improve the accuracy of pose
estimation, DF-VO [21] explores an integrating deep learning
method with epipolar geometry.

Visual-Inertial Sensor Fusion: Visual-inertial odometry
(VIO) has been successfully used for camera pose tracking
which enabled a lot of augmented reality (AR) and navi-
gation applications. There are many famous VIO algorithms
which have fused vision and inertial data with either filters
or optimization frameworks to improve the tracking accuracy,
e.g., MSCKF [22], VINS [23], ROVIO [24], and OKVIS [25].
Such algorithms take the similar idea of leveraging visual and
inertial data as our work, but leverage them in a determin-
istic way, e.g., only using inertial measurement unit (IMU)
data for the scale factor of whole scene ([26]). In addition,
they always rely on handcrafted features, but naively using all
features may lead to incorrect feature extraction or matching,
e.g., crippling the entire system in low-light conditions or with
excess inertial noises. Some latest approaches have used deep
learning techniques for more robust data fusion, e.g., the selec-
tive fusion [27] and VINet [28]. While VIO algorithms work
well for ego-motion estimation, they only produce very sparse
depth samples, which are far from a complete depth map of the
scene. Our approach selectively fuses visual and inertial data
for depth and ego-motion estimation simultaneously, which
can not only provide robust ego-motion estimation as tradi-
tional VIO algorithms but also generate depth estimations at
a more fine-grained level.

III. OVERVIEW

In this article, we aim to learn monocular depth and ego-
motion via a selective visual-inertial fusion perspective. Our
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Fig. 1. Overview of our unsupervised learning framework. Given two consecutive frames Ia and Ib, the DepthNet [29] predicts individual depth maps Da
and Db, while the PoseNet [8] and the BiLSTM [30] encode visual and inertial motion features between two frames, respectively. Our Reweighting Network
selectively fuses motion features from two modalities, and produces 6-D ego-motion estimates Pa→b. During training, we warp both frame Ia and its depth
map Da to the other pose, and compute loss without any supervision signals.

TABLE I
NOTATIONS

model inputs consist of unlabeled videos from a monocular
camera and inertial measurements from an IMU, includ-
ing 3-axis accelerations from an accelerometer and 3-axis
angular rates from a gyroscope. Fig. 1 depicts a modu-
lar overview on our unsupervised learning framework with
four components: 1) DepthNet [29] as the monocular depth
network; 2) PoseNet [8] as the visual-based motion encoder;
3) BiLSTM [30] as the inertial-based motion encoder; and 4) a
reweighting network for selective feature fusion.

Table I demonstrates the nation of symbols used in our
model. Especially, given two consecutive frames Ia and Ib,
the DepthNet predicts their individual depth map Da and Db.
In the meanwhile, the PoseNet and the BiLSTM encode visual
and inertial motion features between two frames, respectively.
Our reweighting network selectively fuses motion features
from two modalities and produces 6-D ego-motion estimates
Pa→b for image warping. During training, we warp both frame
Ia and its depth map Da to the other pose and compute the
corresponding geometry consistency loss (i.e., the depth incon-
sistency between Da→b and the interpolated D′

b), photometric
loss (i.e., the color inconsistency between Ia→b and Ib ), depth

smoothness loss, and our structure consistency loss to con-
strain the model. This is an unsupervised learning framework
without any supervision signals.

IV. MOTION FEATURE EXTRACTION AND FUSION

In this section, we present how to extract the most effective
and robust motion features from visual and inertial readings,
respectively. We also propose a selective feature fusion mech-
anism to combine their complementary strengths in different
environments or with user-specific moving dynamics.

A. Visual-Based Motion Encoder

Given two monocular images Ia and Ib, we stack them and
employ the PoseNet [8] as our visual-based motion encoder.
It consists of seven stride-2 convolutions followed by a 1 × 1
convolution with 6(N − 1) output channels, corresponding to
three Euler angles and 3-D translations for 6-D ego-motion
representation. All layers are followed by a ReLU activation
function except for the last one. We denote the visual-based
motion feature as fV

fV = PoseNet(Ia, Ib). (1)

B. Inertial-Based Motion Encoder

Compared with a camera, the proprioceptive inertial sensor
produces high-frequency, environment-agnostic, and scale-
consistent motion measurements, especially over a long tra-
jectory. However, inertial readings are easily plagued by
heavy noises from a commodity IMU, causing unbounded
tracking errors through double integrations. Thus, we adopt
a bidirectional long short-term memory (LSTM) network
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as the inertial-based feature encoder. Intuitively, its bidirec-
tional structure captures both forward and backward motion
transformations between two poses, which is consistent with
warping pairwise images back and forth. We denote the iner-
tial sequence between each two images as xa:b, and extract its
corresponding motion feature fI as

fI = BiLSTM(xa:b). (2)

C. Selective Feature Fusion

Intuitively, visual and inertial measurements have comple-
mentary strengths. Videos are suitable to predict accurate
translations in static and distinct areas under proper illu-
minations, while inertial data provide high-frequency, scale-
consistent, and environment-agnostic motion estimations.

Therefore, we explore a visual-inertial reweighting network
to selectively fuse them according to various environmental
conditions and user-specific moving dynamics. Especially, we
apply gated operations by a sigmoid nonlinearity to produce
dynamic confidence on each modality, i.e.,

wI = SigmoidI

(
f′I

)
, wV = SigmoidV

(
f′V

)
(3)

where f′I = FC(fI) and f′V = FC(fV), namely, the transformed
inertial and visual motion features after several FC layers.

Finally, we multiply individual motion feature with its cor-
responding weight, concatenate the reweighted features among
two sensing modalities, and deploy two FC layers to predict
the relative 6-D ego-motion, i.e.,

Pa→b = FC([wI ∗ fI; wV ∗ fV ]). (4)

Fig. 2 shows the learned weights of both visual and iner-
tial features along an example trajectory, and we have found
several interesting observations.

1) Inertial features contribute more in tracking fast rotation
movements (e.g., turning), deriving from high sam-
pling rates and precise rotation measurements from the
gyroscope.

2) The inertial weight increases for low-speed tracking, and
decreases with sharp translation movements (e.g., speed-
ing and braking), due to the low-quality of a commodity
accelerometer.

3) The visual weight remains at a low level with frequent
illumination variations, which violate the brightness con-
stancy assumption. These demonstrate the effectiveness
of our selective fusion approach.

V. UNSUPERVISED LEARNING

Inspired by other unsupervised learning approaches
[2], [3], [8], [31], we exploit the principle of projection geom-
etry and warp each frame and its depth map into a related pose,
and design multiple loss items to constrain the model training
without any supervision signals.

A. Projection Geometry

Given one frame Ia, we predict its corresponding depth map
Da via the DepthNet (shown in Fig. 1), thus each pixel on

Fig. 2. Selective visual-inertial fusion examples for monocular depth and ego-
motion estimation. Top to bottom: visual weights, vehicle’s angular rate, vehi-
cle’s forwarding accelerations, and inertial weights. Illumination variations
and turning actions decrease visual weights, while sharp speeding/braking
reduce inertial weights.

frame Ia can be projected back into the 3-D scene, i.e.,

Q(i, j) = K−1 · Da(i, j) · [i, j, 1]T (5)

where Q(i, j) denotes the projected 3-D point cloud for each
pixel on the frame, and K is the camera intrinsic matrix which
is learned by camera calibration.

Next, once the camera’s movement Pa→b to another frame
Ib is acquired by the motion network, we reproject the 3-D
point cloud onto this related pose, thus transforming the depth
map Da to a warped depth map Da→b, i.e.,

Da→b(î, ĵ) · [î, ĵ, 1]T = K · Pa→b · Q(i, j)

= K · Pa→b ·
(

K−1 · Da(i, j) · [i, j, 1]T
)

(6)

where [î, ĵ, 1]T denotes the transformed pixel on warped
depth map Da→b. This equation also ensures [î, ĵ, 1]T as
homogeneous coordinates on the image.

B. Loss Computation

First, (6) requires the geometry consistency between two
frames, i.e., they correspond to the same point cloud in 3-D
scene; thus, the warped depth map should be consistent with
the interpolated one. Following [3], we define the geometry
consistency loss among all pixel coordinates:

Lgc =
∑ |Da→b − D′

b|
Da→b + D′

b
· Mgc (7)

 



GAO et al.: UNSUPERVISED LEARNING OF MONOCULAR DEPTH AND EGO-MOTION 16251

where Mgc denotes the validity mask matrix [2], and D′
b is the

interpolated depth.
Second, based on the well-known brightness constancy

assumption [32], we summarize color constancy errors
between a frame and a warped image which is transformed
via motion estimation from a related frame. The image recon-
struction loss among all pixel coordinates is formulated as

Lrec =
∑

λ1‖(Ia→b − Ib) · Mrec‖1

+ λ2(1 − SSIM(Ia→b, Ib)) · Mrec (8)

where Mrec is the weight mask for active objects which is com-
puted analytically from the predicted depth and ego-motion.
SSIM denotes the structural similarity metric [33], and (λ1, λ2)

are weight parameters. Especially, we set λ1 = 0.15 and
λ2 = 0.85 in our model.

In addition, a depth smoothness loss has been widely used
to regularize depth estimations [19], since it tolerates sharp
variations at pixels in the depth map which are consistent with
the original frame. For the depth map D of image I, it is
formulated among all pixel coordinates

Lds =
∑

‖∂xD‖e−‖∂xI‖+‖∂yD‖e−‖∂yI‖. (9)

In sum, our overall loss function in outdoor scenarios is
defined as

Ltotal = αLgc + βLrec + γ Lds (10)

which α, β, and γ are hyperparameters. We set α = 0.5,
β = 1, and γ = 0.1 during training.

VI. STRUCTURE CUE

The projection geometry largely relies on distinct feature
points in surrounding area, thus is not suitable in featureless
indoor environments with similar decorations and white walls,
e.g., tunnels, underground parking structures, and multilevel
overpasses. In addition, since GPS receptions are obscured
or even blocked indoors, existing scene optimization methods
(e.g., bundle adjustment [34] and loop closure detection [35])
cannot be launched. We observe that majority indoor envi-
ronments are comprised of manmade buildings, which usually
follow the Manhattan world assumption1 with many structure
cues in such environments, e.g., two-side walls are parallel
and they both are perpendicular to ceilings and floors. In this
section, we exploit such structure cues to infer the geometric
scene from a single image and use it to calibrate the learned
depth estimates by DepthNet.

A. Geometric Reasoning from Single Image

Line Segments and Vanishing Points: We use the Canny edge
detector [36] to extract line segments on each image, and fol-
low Rother [37] to estimate three orthogonal vanishing points
correlated to the image. Especially, it adopts a random sample
consensus (RANSAC) solution to fine tune the orthogonality
under optimization; thus, clusters line segments into three cat-
egories oriented to three vanishing points [marked as green,
red, and blue on Fig. 3(a)], and removes line segments in

1Scenes are built on a cartesian grid which leads to regularities in the image
edge gradient statistics, which is suitable for majority manmade buildings.

Fig. 3. Geometric reasoning from a single image. (a) Line segment extraction
and clustering. (b) Orientation map. (c) Orientation mask and structure lines.
(d) Four major planes with respective depth weight. (e) Scene depth map.

other directions as outliers (marked as yellow). This cluster-
ing algorithm is based on the Manhattan world assumption,
which is suitable for majority manmade buildings. We denote
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Fig. 4. Illustration for scene depth by structure cues. (a) 3-D view, where O
is a camera on the vehicle, P1 and P2 are two practical points and they are
projected to Q1 and Q2 on image plane. (b) Image view, where V and V ′ are
two vanishing points, and VV ′ forms the structure line.

the center vanishing point as V = (Vi, Vj) on the image, i.e.,
the intersection point for all red lines on Fig. 3(a).

Orientation Map: As shown in Fig. 3(b), we leverage a geo-
metric reasoning algorithm [38] to generate the corresponding
orientation image based on these oriented line segments, i.e.,
the orientation of each pixel is perpendicular to the orienta-
tion of two nearby line segments. For example, the horizontal
floor surface is produced by a green line above it and two red
lines to its two sides. Intuitively, the orientation map represents
the orientation consistency in pixel regions, thus restricting the
depth estimates with plane constraints under projective geome-
try. In addition, we observe that there exists blank pixels with
no orientations in the orientation map, which denote some
uncertain areas in other orientations against the Manhattan
world assumption; thus, we formulate a corresponding ori-
entation mask [Fig. 3(c)] to record the orientation confidence
only for horizontal and width planes (i.e., removing vertical
and uncertain planes).

Scene Depth Map: For a typical image taken in manmade
environments, its orientation map usually produces four major
planes [Fig. 3(d)], including one ceiling plane S1 (up), one
floor plane S2 (down), and two surrounding walls S3 (left)
and S4 (right) at both sides.

1) According to the principle of the projective geometry,
the scene depth for image points on a plane is inversely
proportional to its respective distance to the correspond-
ing structure line (Fig. 4), i.e., |OD1|/|OD2| = (d2/d1)

where V and V ′ are two vanishing points and VV ′ is
connected as the structure line. Thus, it establishes the
scene depth relations on each plane.

2) We aim to connect all planes in an image to calculate
its depth estimates within a uniform scale. Intuitively,
we observe that the position of center vanishing point
V reflects the 2-D rotation of a camera. For example,
if the camera’s orientation is rotated upward and to the
right, the vanishing point V will accordingly move in
the inverse direction on the image, i.e., toward the left
bottom corner. Therefore, the camera captures more and
closer views on top and right regions by this rotation
event. For each image point pk (within the orientation
mask), we define its weighted scene depth sk as

sk = wSk

dist(pk, lk)
(11)

Fig. 5. Our dedicated prototype for data collection in indoor buildings.

where Sk ∈ {S1, S2, S3, S4} denotes the plane index that
pk belongs to, lk denotes its corresponding vanishing
line, and dist() computes the distance from a pixel point
to an image line. wSk represents the weight of plane Sk

based on the center vanishing point V , i.e.,

wS1 = Vj

H
, wS2 = H − Vj

H
, wS3 = Vi

W
, wS4 = W − Vj

W
(12)

where W × H denotes the image resolution. Finally, we
produce the scene depth map for each image [Fig. 3(e)].

B. Structure Consistency

The scene depth map constrains the structure consistency
of pixel depths on four major planes, thus we further use it
to calibrate depth estimates from the DepthNet. Since there is
a depth scale factor between scene depth map and DepthNet,
we aim to minimize their variations with a uniform scale for
all pixel points pk on the image, thus the structure consistency
loss is defined as

Ls = min
η

∑

pk∈I

Mk · ‖̂dk − ηsk‖2 (13)

where M denotes the orientation map of image I, d̂k is the
estimated depth for pixel point pk via the DepthNet, sk is its
corresponding scene depth, and η denotes the optimal scale
factor for this image.

Finally, for indoor environments with structure cues, we add
the structure consistency loss item into total loss computa-
tion, i.e.,

Ltotal = αLgc + βLrec + γ Lds + δLs (14)

with δ = 0.1 during our training process.

VII. EVALUATION

A. Implementation

Outdoor Data Set: For outdoor driving scenarios, the KITTI
data set [39] is the most common benchmark to evaluate
the accuracy of depth and ego-motion. It also provides both
monocular videos and inertial data with accurate time stamps.
To compare with prior work, we transform the image resolu-
tion as 416 × 128. In addition, the labeled 3-D point clouds
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Fig. 6. Sample depth estimates from KITTI database, produced by Zhou et al. [8], vid2depth [2], Bian et al. [3], our approach, and the ground truth from
3-D point cloud.

and vehicle poses in KITTI are only used as ground-truth sig-
nals for evaluation. We follow Eigen [10] to split the data
set: 40 238 frames with corresponding inertial readings for
training, 4448 for validation, and 697 for test.

Indoor Prototype: Although there are several public data
sets for indoor Unmanned Ground Vehicles (UGV), they either
do not gather inertial readings (e.g., NYU Depth V2 [40]) or
only focus on fine-grained objects instead of large-scale hall-
ways and lobbies (e.g., EuRoc MAV Data set [41]). Thus, we
develop a dedicated UGV prototype (Fig. 5) based on NVIDIA
Jetson Xavier NX with a monocular camera (10 Hz) and a
commonly-used IMU (100 Hz). We use it to collect data in
a 80 m×50 m teaching building in our campus, and attach
a laser radar (10 Hz) to measure the ground truth of scene
depth. The image resolution is set as 480 × 288, and the ratio
for training/validation/test split is 8 : 1 : 1, i.e., there are 13 769
frames for training, 739 for validation, and 739 for test.

Data Augmentation: For videos, we augment each frame
with random scaling, cropping, and horizontal flips to increase
the image diversity. For inertial readings in KITTI data set,
although there is a “synced” data set, its visual and inertial
measurements are recorded at the same sampling rate (10 Hz)
which cannot capture fast movements, thus we choose inertial
measurements from the “unsynced” data set (100 Hz) and align
them with the image time stamp. In addition, in order to ensure
ten IMU samples between two consecutive frames, we linearly
interpolate vacant samples and randomly remove redundant
ones. Note that since we have horizontally flipped some
random frames for augmentation, we also conduct flipping
operations for corresponding inertial sequences.

Training Details: We implemented our system using the
TensorFlow framework [42]. We modify the DispNet [29]
with single-scale supervision as our depth network for KITTI
data set, and with four scales in indoor scenarios. We also
employ the PoseNet [8] without mask prediction branch as
our visual-based motion encoder. In order to improve data util-
ity, pairwise frames are trained both forward and backward in
PoseNet. We leverage batch normalization and adopt the Adam

TABLE II
KEY PARAMETERS

optimizer [43] (β1 = 0.9 and β2 = 0.999) at learning rate of
2e − 4. The training batch size is set as 4. Table II depicts the
detailed settings of key parameters.

B. Evaluation of Outdoor Depth Estimation

Table III quantitatively compares the accuracy of monocu-
lar depth estimates on the outdoor KITTI data set with recent
approaches and ours. The image resolution is commonly set
as 416 × 128. The results have demonstrated that our method
consistently produces the top two results over all metrics. This
indicates that inertial measurements used in motion networks
can indirectly improve depth estimates without involving loss
computation. In addition, our visual-inertial fusion strategy
can be effectively and favorably intergraded with other unsu-
pervised learning systems for UGVs. Fig. 6 further depicts
several example images for comparison. We observe that our
method improves the smoothness of depth estimates regardless
of illumination variations.

C. Evaluation of Outdoor Motion Estimation

We compare our method on KITTI data set with two rep-
resentative SLAM frameworks, i.e., ORB-SLAM2 [35] and
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TABLE III
QUANTITATIVE RESULTS ON MONOCULAR DEPTH ESTIMATION ON THE OUTDOOR KITTI DATA SET. THE COMMON IMAGE RESOLUTION IS SET AT

416 × 128 FOR BOTH OUR APPROACH AND THE STATE OF THE ART

TABLE IV
QUANTITATIVE RESULTS ON TRACKING TRAJECTORIES IN THE KITTI ODOMETRY DATA SET

VINS [23] (without loop closure detection). They both employ
the optimization strategy (e.g., bundle adjustment [34]) to
improve global accuracy. We also report results from two
recent works [3], [8] with scale adjustments. Since the ground
truth of sequences 11–20 in KITTI data set are not released,
we can only use the first ten sequences for both training and
validation, thus we follow Zhou et al. [8] to split the data set,
i.e., training the network with 00−08 trajectory sequences and
testing with 09 − 10 sequences. We also remove the first five
frames (∼ 0.5 s) since they always cause initialization failures
in ORB-SLAM.

Table IV shows the average translation errors (terr), average
rotation errors (rerr), and absolute trajectory errors (ATEs)
among all frames (not only five frames). Note that the results
are slightly lower than the official report of KITTI which is
based on stereo videos, and its unit of rerr is ◦/1 m while ours
is ◦/100 m. The results indicate that our approach outperforms
other unsupervised learning methods over all metrics, especially
reducing the ATE to a much lower level. When compared
with ORB-SLAM, we produce significantly better results on
sequence 09 and slightly large errors on sequence 10. Thus,
our visual-inertial fusion strategy improves the accuracy and
robustness of the motion network. Some example trajectories
from different methods are shown in Fig. 7 for comparison,
and ours are very similar with the ground truth.

In addition, Table V further depicts the ATE results over five
frames. Our method outperforms all other monocular depth
estimation approaches, and remains comparable even to the
state-of-the-art SLAM systems.

D. Ablation Study

Image Resolutions: The last two rows in Table III shows the
accuracy of depth estimates over images with two resolutions.
It indicates that our approach derives slightly lower errors and

TABLE V
FIVE FRAMES ATE ON THE KITTI ODOMETRY SPLIT, WITH AVERAGE

ATE AND STANDARD DEVIATION, BOTH IN METERS

TABLE VI
ALL FRAMES ATE WITH CORRUPTIONS ON VIDEO QUALITY

TABLE VII
EFFECTIVENESS OF USING BILSTM FOR INERTIAL LEARNING

nearly the same accuracy at a larger 832 × 256 image reso-
lution. Thus, our method remain the robustness even at small
resolutions.

Corrupting Video Quality: In order to evaluate our robust-
ness on video quality, we manually generate three categories
of videos from the original KITTI data set, with bright
videos (contrast − 50%, brightness + 100), dim videos (con-
trast − 50%, brightness − 30), and all black videos (shown
in Fig. 8). Table VI shows the ATEs over different fusion
strategies. Compared with the basic motion network [3], our
visual-inertial fusion approach is effective to produce accurate
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Fig. 7. Trajectory estimates on the KITTI odometry data set. (a) Seq. 09. (b) Seq. 10.

Fig. 8. Corruption examples on video quality.

Fig. 9. Trajectory estimates of Seq. 09 with corruptions on video quality. (a) Bright video. (b) Dim video. (c) No video.

TABLE VIII
QUANTITATIVE RESULTS ON INDOOR MONOCULAR DEPTH ESTIMATION, COLLECTED BY OUR DEDICATED PROTOTYPE IN A CAMPUS BUILDING

and useable trajectories in all cases, even without video inputs
(all black images). Fig. 9 further depicts qualitative results on
sequence 09.

Motion Network: Table VII depicts the effectiveness of
using Bi-LSTM to extract motion features from IMU data.
Compared with FC, CNN, and LSTM for inertial learning,
the BiLSTM achieves the least errors and best accuracy on
monocular depth estimation.

Reweighting Network: We have evaluated the effectiveness
of our reweighting network in Tables III, IV, and VI (the
last two rows in each table). The tag “direct fusion” denotes
the fusion scheme without reweighting network, i.e., con-
catenating visual and inertial features and fusing them with
FC networks. From the three tables, we observe that our
reweighting network (with tag “selective fusion”) improves the
accuracy of both monocular depth estimation and trajectory
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Fig. 10. Examples of monocular depth estimation in an indoor building. The
first column is for a long corridor with glass walls and the second column
is with blank walls. (a) Original image #1. (b) Original image #2. (c) Depth
map from Zhou et al. [8]. (d) Depth map from Zhou et al. [8]. (e) Depth map
from Bian et al. [3]. (f) Depth map from Bian et al. [3]. (g) Ours without
structure cues. (h) Ours without structure cues. (i) Ours without IMU. (j) Ours
without IMU. (k) Ours. (l) Ours. (m) Ground truth by laser radar. (n) Ground
truth by laser radar.

tracking, and it also enhances the environmental robustness in
extreme illumination conditions. The reason is that although
inertial data is not involved in calculating loss functions, it

can calibrates the warped image thus improves depth estimates
through the unsupervised learning framework.

E. Evaluation of Indoor Depth Estimation

Since current public indoor UGV data sets cannot satisfy
our requirements (e.g., gathering both monocular images and
inertial readings in large-scale indoor buildings), we develop
our dedicated prototype and collect data in a 80 m×50 m
campus building. The ground truth is recorded via a laser radar
to measure surrounding point clouds. The image resolution is
set as 480×288 and we adopt a commodity IMU (Wit-motion
JY61P at $10.0) to collect inertial readings at 100 Hz.

Table VIII demonstrates the accuracy of indoor monocu-
lar depth estimation. Compared with two recent approaches
([8] and [3]) designed for outdoor monocular depth learning,
our method produces slightly lower errors and much higher
accuracy. This is because the structure cues calibrate pixel
depth estimates with scene constrains, thus eliminate out-
liers with extreme errors and raise the accuracy. In addition,
although our IMU is cheap with low-quality measurements, it
is still effective to reduce all types of errors.

In addition, Fig. 10 illustrate two example images on a long
corridor, one with glass walls and the other with blank walls.
We observe that the depth map by Zhou et al. [8] is easily
disarranged by illumination variations from sunlight or lamp-
light, and there are obvious black stripes on the depth map by
Bian et al. [3] due to the depth uncertainty on areas with sim-
ilar appearances. In comparison, ours match the ground truth
well without sharp depth mutations on floors and walls.

VIII. CONCLUSION

In this article, we proposed a novel unsupervised learn-
ing framework to infer monocular depth and ego-motion from
a visual-inertial fusion perspective. It enables environment-
agnostic depth estimates and scale-consistent motion trajec-
tories by selectively combining different sensing modalities
within a reweighting network. We also explored the principle
and effectiveness of structure cues to calibrate depth estimates
in indoor buildings. Extensive experiments on the KITTI data
set and our dedicated prototype demonstrate our effectiveness
and robustness compared with the state of the art. To the best
of our knowledge, this was the first approach to fuse visual
and inertial data for monocular depth and ego-motion estima-
tion in an unsupervised manner, and remain suitable for indoor
environments.
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