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Abstract—Although location awareness is prevalent outdoors
due to the GPS, we get confused and disoriented in many
blocked environments such as in urban canyons and under
multi-level flyovers. A straightforward solution is to employ
cellular signals for positioning, but the cellular signatures are
always sparse and uneven in vast region, and vary among
different devices and postures. In this paper, we propose DCCP, a
novel cellular network positioning approach that transforms the
localization problem into a corresponding object recognition task
in geographic space. Specially, we elicit the receptive region of
each cellular station via crowdsourced user queries, and exploit
neighbour base stations to derive a multi-dimensional feature
map. We also devise a CNN model to learn local correlations
among nearby map grids, and employ it for cellular positioning.
Extensive experiments on two real-world traffic datasets from
the DiDi platform have demonstrated our effectiveness compared
with the state-of-the-art. This is the first approach to use only user
queries instead of RF signatures for cellular network positioning,
and our system meets requirements of the E911.

Index Terms—cellular network positioning, user query, multi-
dimensional feature map, CNN

I. INTRODUCTION

Thanks to the explosion of GPS systems and devices,
drivers are always conscious of their positions based on the
popularity of location-based services (LBS) [1]. The location
awareness has become an essential infrastructure in current
sharing economy, especially for the ride-hailing platforms such
as Uber, Lyft, and DiDi. However, whenever we drive into GPS
blocked environments such as in urban canyons and under
multi-level flyovers, we lack sufficient GPS receptions and
easily get confused in such maze-like road structures.

This perennial challenge has sparked decades of research
and yielded various Cellular Network Positioning (CNP) tech-
niques [2]. A naive method is to use the Cell ID (CID)
mandatory, i.e., estimating users’ approximate locations based
on their connected cellular base station, but the localization
errors are often larger than 150 meters due to the wide
coverage of 4G cellular towers [3]. A dedicated device [4]
is deployed to scan surrounding cellular signals and produce
corresponding distances towards nearby base stations via a
particular radio propagation model, but it is not extensible for
commercial smartphones. Recently, a series of efforts [4], [5]
investigate various Radio-Frequency (RF) features for cellular
network positioning. They always collect Received Signal

Fig. 1. Unreliable RSRP measurements for cellular network positioning. The
signal strength varies widely among different devices and postures, and two
far-away areas may share similar signal strength distributions.

Strength Indicator (RSSI), Reference Signal Receiving Power
(RSRP), and Reference Signal Receiving Quality (RSRQ)
cellular signatures at each location to construct a fine-grained
fingerprint database, thus reducing localization errors caused
by the non-line-of-sight signal propagation and multi-path
fading effects. However, due to the arbitrary postures of
smartphones and various quality of on-device antennas, the
distribution of RF features is always broad and there exist
similar signal strengths even in two far-away positions (Figure
1), resulted in extreme localization errors for more than 80
meters based on the state-of-the-art [6].

In this paper, we propose DCCP, a novel Deep Convolu-
tional neural network for Cellular network Positioning. Our
intuition is to rank geographic grids based on the quantity
and update time of user queries, instead of using the signal
strength which varies among different devices and postures.
The overview of our method is shown in Figure 2. First, we
extract the receptive region for each base station based on the
quantity and update time of user queries. Next, we construct
a multi-dimensional feature map via nearby base stations, and
explore a CNN model to infer the user’s relative position
towards the center of the reception region.

Specifically, we make the following contributions:
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Fig. 2. The overview of our cellular network position method. (a) For each base station, we take user queries and map grids as input, and identify its reception
region based on the quantity and update time of previous queries. (b) We exploit nearby base stations to construct a multi-dimensional feature map, and (c)
explore a CNN model to produce user’s relative position towards the center of reception region.

• We elicit the receptive region of each cellular station only
based on user queries, thus preclude the interference from
the broad and uneven distributed RF signatures.

• We extract features of nearby cellular stations, and devise
a multi-dimensional feature map as model inputs, instead
of directly predicting the missing fingerprints.

• We propose a novel CNN model to extract the local
correlation among adjacent map grids, and infer user’s
relative locations in the receptive region.

• We conduct extensive experiments on real-world datasets
collected by the DiDi platform. Results have shown our
effectiveness compared with the state-of-the-art.

II. RELATED WORK

Received Signal Strength in UMD. UMD (User Mea-
surement Data) is reported by LTE smartphones regularly. It
contains the RF measurements such as reference signal receiv-
ing power (RSRP), received signal strength indicator (RSSI)
and reference signal receiving quality (RSRQ) [2]. RSRP is
a crucial indicator of LTE, which is the average value of the
signal power received on all REs carrying the reference signal
in the symbol. RSSI is the average value of the power of all
signals (including pilot signals and data signals, neighboring
interference signals, noise signals, etc.). RSRQ is the ratio
of RSRP and RSSI, i.e., RSRQ = N ∗RSRP/RSSI where
N denotes the signal bandwidth. Although we can build a
wireless signal propagation model to transform these channel
measurement values into distances from/to base stations, there
are too many occlusions in urban cities, thus causing huge
localization errors [1].

Cellular Network Positioning. Cellular network position-
ing is an indispensable component of location-based services
(LBS). It has been developed and applied for decades. The
most frequently used at an early age is the cell-id based
positioning method [3], [7]. Then some hardware-specific
approaches are proposed, e.g., AOA [8] and TOA [9] meth-
ods. However, this kind of technology is highly dependent
on the density of base stations, and the information in the
practical UMD is always insufficient for TOA and TDOA. The

fingerprint-based method [10] came out since cellular stations
are densely deployed. Cellsense [11] proposed a cellular
RSSI fingerprint positioning method. Margolies et al. [12]
constructed a wide-area radio map and developed a fingerprint-
based test platform for cellular network positioning. In order to
track users, Ray et al. [5] exploited the predicted fingerprints
to match the UMD time series with the physical route,
thus deriving continuous trajectories. Chakraborty et al. [4]
proposed a geo-tag method based on the Gaussian mixture
model (GMM), which formulates the characteristics of the
RF signal as a Gaussian distributed random variable. Tian et
al. [13] redesigned the subspace identification mechanism and
took full use of the internal relations of RF fingerprints. They
also proposed a large-scale fingerprint prediction method to
fill up the missing fingerprints, but the cellular localization
accuracy is still insufficient, especially for arbitrary postures
and devices.

Machine Learning for Positioning. With the maturity of
machine learning algorithms, all the collected information
can be fully utilized as features for learning. Industries are
often employing a geographic grid ranking method for cellular
positioning. They score each map grid based on various obser-
vations in UMD, which can not capture the local correlation
of adjacent grids in space, resulting in insufficient accuracy
with different postures and devices. CNN has achieved great
success in the field of computer vision [14]. It has specific
characteristics including local area connection, weight sharing,
down-sampling, etc. R-CNN [15] can derive the candidate
area and produce accurate prediction results via the local
correlation of adjacent image pixels. It inspired us that CNN
has the potential ability to extract the local correlation of
adjacent grids in map space and improve the accuracy of
cellular network positioning.

III. METHODOLOGY

In this paper, we propose our cellular network position
method DCCP, which only utilizes the quantity and updating
time of user queries as inputs, instead of measuring RF
features. It extracts the receptive region of each base station for

 



Fig. 3. One base station covers multiple map grids, and we calculate the
amount, updating time, and source over all queries in each grid.

(a) Collection numbers heat (b) Update time heat

Fig. 4. Heat maps on queries. The gradation of color indicates the quantity
and updating time of queries.

better attention, involves adjacent base stations to extend the
dimension of feature maps, and devises a deep CNN model to
infer the user’s relative location based on the local correlation
of map grids.

A. Query Database Construction

Thanks to the explosion of ride-hailing platforms, full-
fledged crowdsourcing mechanisms have been deployed to
collect user queries among tens of millions of smart-
phones. One typical query record can be denoted as: Q =
{t, l, d, p, C1:m, R1:m}, where t represents the time stamp, l
is the current location of user, d and p represent whether the
record comes from a driver or a passenger, m is the number
of base stations which are scanned at the current location,
C1:m denotes the Cell ID of each base station, and R1:m is
the corresponding signal strength RSRP.

Next, we randomly select 80% of the collected records in
the past one month to establish a query database (shown in
Figure 3). We divide the urban area into small grids with
the same size (e.g., 11m × 11m in our project), and classify
grids according to the coverage of each cellular station. Since
there are always coverage overlaps among different cellular
stations, a grid may belong to multiple stations. We then count
the number of queries α, the latest updating time as β, and
the source (d for driver and p for passenger) to construct the
database.

B. Receptive Region Detection

Since crowdsourcing queries are always sparse and uneven
in vast areas, we propose a receptive region detection al-
gorithm for better attention. As elucidated in Figure 4, the
quantity and updating time of queries profoundly infer user
locations at grid levels. Thus, we exploit both of them to elicit
a small and inclusive receptive region of each base station.

Fig. 5. Receptive region detection and feature map construction.

We devise a time attenuation factor to combine queries’
quantity and updating time, and calculate the weight for each
grid, i.e.,

γi = αi exp{−(t− βi)} (1)

where αi represents the number of queries from all cellular
stations at the grid Gi, βi is the last updating time among all
queries, and t is the current time.

Based on this weighting mechanism, we score all map grids
for each cellular station, select the top n grids and derive
their center as the original point for localization. Finally, we
produce the receptive region as an m × n rectangular area
according to the same center (shown in Figure 5).

C. Input Features

Existing cellular network positioning techniques always fill
up the missing fingerprints based on sparse and uneven RF
observations, thus the localization accuracy is easily impeded
by arbitrary postures and qualities of smartphone antennas.
Instead of predicting a fine-grained fingerprint database, we
observe that cellular signals from some neighbor base stations
are still strong due to the wide coverage of LTE networks
(shown in Figure 7). Thus, our intuition is to utilize neighbor
cellular stations to extend the dimension of our feature maps.
Based on our experiments, we exploit one main station and
six neighboring stations in urban areas.

For each grid Gi, we devise a five-dimensional feature map
of each base station k, including:

• The number of queries α(k)
i ;

• The last updating time β(k)
i ;

• The time attenuation factor γ(k)i ;
• The number of drivers d(k)i ;
• The number of passengers p(k)i .
Figure 6 contrasts the workflow of feature map construction.

For each station, we elicit the reception region and produce a
5-dimensional feature map. Finally we stack W feature maps
among all base stations as the input of our CNN model.

D. Model

Our CNN model exploits the multi-dimensional feature
maps F as input, and predicts the deviation (∆x,∆y) of

 



Fig. 6. DCCP structure. It consists of three convolutional layers and three fully connected layers. Before each layer of convolution, there is a SE block as
the attention mechanism, including global pooling, fully connection and sigmoid activation.

Fig. 7. A user receives multiple cellular signals from different base stations,
and their RSRP signatures are slightly different.

user’s relative position towards the original point x0, y0) in
the receptive region, i.e.,

(∆x,∆y) = CNN(F ) (2)

Structure. Our model is composed of three convolutional
layers and three fully connected layers, as shown in Figure
6. We also add an SE module [16] before each convolutional
layer as the attention mechanism among different channels.
The SE module consists of global pooling, fully connection
and sigmoid activation. We use different sizes of convolution
kernels (3× 3, 5× 5, and 7× 7) to extract features in the first
convolutional layer, and employ a 5×5 convolution kernel for
the last two convolutional layers. After each convolution, we
use a 2×2 maximum pool layer to reduce network parameters.

Loss function. The user’s predicted global position (x̂, ŷ)
is computed as:

(x̂, ŷ) = (x0 + ∆x, y0 + ∆y) (3)

where (x0, y0) is the coordinates of the center in reception re-
gion. We leverage the harversine formula as our loss function,
which calculates the distance between the predicted position
and its ground truth:

L = 2r arcsin (

√
sin2 (

ŷ − y
2

) + cos y cos ŷ sin2 (
x̂− x

2
))

(4)
where r is the radius of earth and (x, y) is the ground truth
(gathered via opportunistic GPS observations).

Implementation. Our models are implemented in Tensor-
Flow, and trained for 30000 epochs using the Adam op-
timizer with learning rate of 5e − 4. The ratio for train-
ing/validation/test split is 0.64 : 0.18 : 0.2. We set the batch
size of 512 and dropout of 0.5. The training and validation
process is shown in Figure 8.

Fig. 8. Training and validation process.

IV. EVALUATION

A. Experiment setting

Data collection. Based on the DiDi ride-hailing platform,
We collected one million crowdsourcing queries within one
month, and constructed a query database covering a small area
(Shelchi with 2.6 km2) and a large city (Beijing with 16410
km2). Each query includes its timestamp, a cell ID of the
connected cellular station, local indicators of six neighbouring
cellular stations, a driver/passenger tag, and opportunistic GPS
locations as the ground truth. An example application for data
record is shown in Figure 9.

Experiment overview. 1) We use different sizes of windows
to generate the receptive regions, and test which one has the
largest coverage probability to involve the correct query. 2) In
order to verify the contribution of neighbor base stations for
cellular network positioning, we adopt a comparison experi-
ment. 3) The feature ablation experiments are used to confirm
the validity of each feature we devise. 4) In order to test
whether our accuracy and reliability can meet the requirements
of E911, we measure localization errors with CDF curves.
5) Finally, we compare with some state-of-the-art methods

 



Fig. 9. An application to record the information of cellular stations. EARFCN
denotes the local indicator of each neighbor station.

Fig. 10. Coverage probability with different sizes of reception region.

including CID, GMM, SSOA, and geographic grid ranking
algorithm, in both small area and large city.

B. Receptive region coverage

In order to find the window size of the receptive region with
the best performance, we adjust the window size and evaluate
the coverage probability by:

C =

∑v=1
N Iv
N

, Iv =

{
0, tv ∈ Gr

1, tv /∈ Gr
(5)

where tv is the ground truth location of this query, Gr is
the current grid, Iv represents whether it is in the receptive
region, and C denotes the coverage probability. In addition,
the broader coverage of a receptive region indicates the better
performance.

The results are shown in Figure 10. For systematic per-
formance impact, e.g., ensuring online operations, we choose
32× 32 as the window size for receptive region detection.

Fig. 11. CDF of localization errors with/out neighbor base stations.

TABLE I
FEATURE ABLATION.

Method MSE MAE MAPE
DCCP-all 29537.0118 81.5595 1.7084
-no number of fingerprint 29747.2639 81.8877 1.7152
-no last collected time 29423.2092 81.8405 1.7143
-no drivers 30308.4701 83.5592 1.75
-no passengers 30203.5582 83.7155 1.7539

C. Effect of neighbor base stations

Our feature map consists of features from both main base
station and its neighbor base stations. To verify the effective-
ness of neighbor base stations for cellular network positioning,
we compare localization errors (Euclidean distance between
the predicted location and the ground truth) with/out neighbor
base stations. As Figure 11 shows, the localization error is
almost reduced to the half with a neighbor base station.

D. Feature ablation

We divide features produced into 4 categories and confirm
the validity of each feature, as illustrated in TABLE I. When
we remove any features, all three errors (MSE, MAE, and
MAPE) are increased compared to the full-feature model. This
indicates the effectiveness of our features.

E. Comparison with others

We compare the performance of our DCCP with CID
[17], Gaussian mixture model [18], SSOA [13] and Geo-
grid ranking algorithm. We conduct localization at 30000 test
samples in Shelchi and Beijing, respectively.

In Figure 12, we observe that the 80-percentile localization
error of DCCP is within 100m, while the errors are larger
than 190m for the other four methods, more than 2x errors of
our method. For SSOA, it transforms the fingerprint predic-
tion problem into a subspace recognition problem via matrix
completion. However, it involves more errors between the
predicted result and the ground truth. For CID, its performance
is impacted by the uneven distribution of base stations. For
GMM, the signal strength received at a given location is
not always a Gaussian distributed random variable. Therefore,
DCCP achieves the best performance to produce more accurate
and robust locations in urban environments.

 



Fig. 12. CDF of localization errors in Shelchi.

Fig. 13. CDF of localization errors in Beijing. SSOA and GMM are discarded
due to their poor training efficiency in the large city.

We also use the E911’s localization requirement as a
benchmark, which announces the probability of 100m errors
should be larger than 67-percentile and probability of 300m
errors larger than 90-percentile. The localization error for our
DCCP is within 100m at 81.2-percentile and within 300m
at 98-percentile, for SSOA is within 100m at 63-percentile
and within 300m at 96-percentile, for Geo-Rank is within
100m at 62-percentile and within 300m at 93-percentile, for
CID is within 100m at 51-percentile and within 300m at 91-
percentile, and for GMM is within 100m at 59-percentile and
within 300m at 83-percentile. Thus, only our method satisfies
the E911’s localization requirements.

In Figure 13, we find DCCP can still achieve better per-
formance than Geo-Rank and CID in large city. SSOA and
GMM are discarded due to their poor training efficiency in the
large city with massive data. Compared with the small region,
its predictive ability has not decreased. Therefore, DCCP is
consistently prior to all the state-of-the-art approaches.

V. CONCLUSION

This paper proposes DCCP, a novel approach that trans-
forms the localization problem into a corresponding object
recognition task in geographic space. Instead of gathering RF
fingerprints for cellular network positioning, we only use user
queries and devise an end-to-end CNN model for localization.
Extensive experiments have shown our effectiveness compared
with the state-of-the-art, and our reliability perfectly meets
the requirements of E911. With the densely deployed 5G

base stations at present, our method has broad applicability in
various applications such as VR/AR games, mobile robotics
and autonomous driving.
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Granados, “Survey of cellular mobile radio localization methods: From
1g to 5g,” IEEE Communications Surveys Tutorials, vol. 20, no. 2, pp.
1124–1148, 2018.

[3] E. Trevisani and A. Vitaletti, “Cell-id location technique, limits and
benefits: an experimental study,” in Proceedings of IEEE workshop on
mobile computing systems and applications, 2004, pp. 51–60.

[4] A. Chakraborty, L. E. Ortiz, and S. R. Das, “Network-side positioning
of cellular-band devices with minimal effort,” in Proceedings of IEEE
INFOCOM, 2015, pp. 2767–2775.

[5] A. Ray, S. Deb, and P. Monogioudis, “Localization of lte measurement
records with missing information,” in Proceedings of IEEE INFOCOM,
2016.

[6] E. Alimpertis, A. Markopoulou, C. Butts, and K. Psounis, “City-wide
signal strength maps: Prediction with random forests,” in Proceedings
of the World Wide Web Conference (WWW), 2019, p. 2536–2542.

[7] T. Kos, M. Grgic, and G. Sisul, “Mobile user positioning in gsm/umts
cellular networks,” in Proceedings IEEE ELMAR, 2006, pp. 185–188.

[8] D. Niculescu and B. Nath, “Ad hoc positioning system (aps) using aoa,”
in Proceedings of IEEE INFOCOM, vol. 3, 2003, pp. 1734–1743.

[9] M. T. Simsim, N. M. Khan, R. Ramer, and P. B. Rapajic, “Time of
arrival statistics in cellular environments,” in Proceedings of IEEE VTC,
vol. 6, 2006, pp. 2666–2670.

[10] Q. D. Vo and P. De, “A survey of fingerprint-based outdoor localization,”
IEEE Communications Surveys & Tutorials, vol. 18, no. 1, pp. 491–506,
2015.

[11] M. Ibrahim and M. Youssef, “Cellsense: An accurate energy-efficient
gsm positioning system,” IEEE Transactions on Vehicular Technology,
vol. 61, no. 1, pp. 286–296, 2011.

[12] R. Margolies, R. Becker, S. Byers, S. Deb, R. Jana, S. Urbanek, and
C. Volinsky, “Can you find me now? evaluation of network-based
localization in a 4g lte network,” in Proceedings of IEEE INFOCOM,
2017.

[13] X. Tian, X. Wu, H. Li, and X. Wang, “Rf fingerprints prediction for
cellular network positioning: A subspace identification approach,” IEEE
Transactions on Mobile Computing, vol. 19, no. 2, pp. 450–465, 2019.

[14] Y. LeCun, K. Kavukcuoglu, and C. Farabet, “Convolutional networks
and applications in vision,” in Proceedings of 2010 IEEE international
symposium on circuits and systems. IEEE, 2010, pp. 253–256.

[15] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,”
in Proceedings of IEEE CVPR, 2014, pp. 580–587.

[16] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2018, pp. 7132–7141.

[17] C. I. based localization: [Online], https://combain.com/about/about-
positioning/cell-id-positioning/, 2017.

[18] A. Chakraborty, L. E. Ortiz, and S. R. Das, “Network-side positioning
of cellular-band devices with minimal effort,” in Proceedings of IEEE
INFOCOM, 2015, pp. 2767–2775.

 


		2022-08-24T13:35:19-0400
	Preflight Ticket Signature




