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Vehicle Inertial Tracking via Mobile Crowdsensing:
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Yao Tong , Shuli Zhu , Xiaotong Ren , Qinkun Zhong , Dan Tao , Chi Li , Lei Liu , and Ruipeng Gao

Abstract— Nowadays, GPS and other global navigation satellite
systems (GNSSs) have been widely developed, enabling accurate
and convenient outdoor location-based services for vehicles. How-
ever, there is still a range of areas in an urban city that cannot
be covered by satellites, e.g., large-scale tunnels, underground
parking lots, and multilevel flyovers. Current vehicle inertial
tracking methods always rely on dead-reckoning, but their
performances are seriously affected by intrinsic fluctuations and
external disturbances. Based on our experiments with thousands
of smartphones, we summarize three threats for vehicle inertial
tracking, i.e., arbitrary and unknown placements of smartphones
during driving, volatile and inconstant noises on low-quality
inertial sensors in commodity smartphones, and a diversity
of smartphones and vehicles via crowdsensing. In this article,
we explore a novel smartphone-based inertial learning framework
to infer a vehicle’s location in real time. It contains a coordinate
transformation algorithm to yield vehicle’s movements from
smartphone’s inertial readings, an inertial sequence learning
model to train and infer the trajectory instead of double
integrations, and a customized model refinement mechanism to
improve the tracking accuracy for individual drivers. Extensive
experiments on the DiDi ride-hailing platform in two large
cities have proved the effectiveness of our solution. In addition,
our approach has been deployed on DiDi real-world mobile
applications in 7.59 million devices and conducted 4.26 billion
location inferences every day.

Index Terms— Coordinate transformation, customized learn-
ing, mobile crowdsensing, smartphone localization, vehicle
inertial tracking.

I. INTRODUCTION

OWING to the maturity and popularization of GPS
devices, vehicular positioning has become ubiquitous

for drivers, e.g., route planning, real-time navigation, and
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Fig. 1. Examples of vehicle tracking in GPS-blocked environments.
(a) Tunnel in Xiamen. (b) Parking garage in Beijing.

automatic driving. Nowadays, even rookie drivers can travel
in unfamiliar areas with outdoor location-based applications.
However, due to the rapid development of urban cities, drivers
frequently enter enclosed environments where barely no GPS
signals can penetrate, e.g., large-scale tunnels, multilevel over-
passes, and underground parking garages. The number of
direct line-of-sight (DLOS) satellites is extremely reduced,
thus causing the delay of signal phase, reduction of load-noise
ratio, multipath propagation, and other serious interference [1].
Drivers may get confused in such nondistinctive areas and
could not find their way out. Fig. 1(a) shows a tunnel in
Xiamen city where vehicles must shift lanes and make turns
inside the tunnel, and Fig. 1(b) illustrates an underground
parking garage in Beijing where drivers frequently forget
where they park the car in such a maze-like structure.

Positioning without GPS signals is not a new topic, espe-
cially for pedestrians. With decades of research, mainstream
indoor localization technologies always rely on Wi-Fi [2], [3]
and other RF signatures [4]–[8], but there are a series of limita-
tions when they are deployed for vehicles [1]. First, there exists
serious instability and susceptibility of RF signal fingerprints
by indoor disturbances [9], and it is time-consuming and labor-
intensive to collect and calibrate such fingerprints at a large
scale. Second, the RF signals are transmitted from certain
IT infrastructures, which can be sparse or even nonexistent
in enclosed environments. Such a high-cost, low-yield, and
unstable positioning approach is not effective for ubiquitous
vehicular location-based services.

To track vehicles in such GPS-blocked environments, mod-
ern ride-hailing platforms (e.g., Uber, Lyft, and DiDi) are
focusing on deploying inertial dead-reckoning methods (e.g.,
the extended Kalman filter (EKF) [10]) by using smartphone’s
inertial sensors. However, drivers may place their smartphones
with arbitrary placements inside vehicles, and there are obvi-
ous and inconsistent noises of inertial sensors in commodity
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smartphones, thus causing extreme location errors and poor
user experience.

Based on the large-scale and crowdsourced traffic data
from DiDi ride-hailing platform, we have conducted a series
of experiments and investigated the limitations of tracking
vehicles with inertial measurements from smartphones. Since
the vehicle’s movement is typically a combination of rotations
and translations, we focus on two motion dynamics measured
by smartphones, i.e., angular rates by the gyroscope and
linear accelerations by the accelerometer. The results from
thousands of smartphones have demonstrated three technical
challenges: 1) drivers may place smartphones with arbitrary
postures in a car; thus, the phone’s coordinate system is not
consistent with the vehicle; 2) inertial sensors are susceptible
to intrinsic fluctuations and external disturbances with volatile
and inconstant noises beyond regular distributions; and 3) the
tracking accuracy differs distinctively on different smartphones
and vehicles, even with the same type.

In this article, we aim to enable an accurate, robust, and
real-time vehicle tracking solution. In addition, the lack of
the Internet connectivity in GPS-blocked environments also
requires it as a smartphone-only approach, i.e., all sensing
and computation tasks are completed locally without the cloud.
Instead of adopting traditional inertial dead-reckoning methods
for vehicles, we propose a novel inertial learning framework
by temporal convolutional networks (TCNs) and customize
such a model for refinement training and location inference
on individual smartphones.

This article is an extension of our proceedings paper pub-
lished in the 27th IEEE International Conference on Parallel
and Distributed Systems (ICPADS 2021) [11]. Specifically, our
contributions consist of the following.

1) Experience: We have conducted extensive experiments
with the traffic data from a famous ride-hailing platform
and analyzed current limitations and technical chal-
lenges, including the arbitrary and unknown placement
of smartphones during driving, the volatile and incon-
stant inertial noises, and the diversity of crowdsourced
smartphones and vehicles.

2) Improvements: We explore a coordinate transforma-
tion algorithm to yield a vehicle’s motion dynamics
via smartphone’s inertial readings. We also propose
an inertial sequence learning framework to train and
infer vehicle’s locations instead of double integrations.
In addition, we customize the model retraining mecha-
nism and derive more accurate trajectories for individual
smartphones.

3) Evaluations: We collect a large-scale crowdsourced
dataset in two large cities in China. Our results outper-
form traditional EKF-based tracking methods and other
sequential learning models. In addition, our approach
has been applied in the current DiDi ride-hailing
platform with smartphones and conducted location
inferences per day.

II. BACKGROUND

Location-based mobile applications enable convenient vehi-
cle tracking and navigation services at the city level, by GPS,

Fig. 2. Location gap between practical position at tunnel exit (by GPS) and
the inferenced position (by inertial tracking).

Fig. 3. Architecture of traditional inertial dead-reckoning. R is the acceler-
ation projection matrix, and a′ denotes the 2-D accelerations on the ground.

or other global navigation satellite system (GNSS) signals
inside smartphones. Nevertheless, with the rapid development
of urban cities, drivers frequently enter GPS-blocked envi-
ronments, such as large-scale tunnels, multilevel overpasses,
underground parking lots, and urban canyons. The lack of
satellite perception seriously affects the driving experience,
e.g., getting confused and disoriented by the location gap
between the practical position at the tunnel exit and the inertial
inferenced position (see Fig. 2).

To provide location awareness in such environments, service
providers mainly deploy on strap-down inertial navigation
systems (INSs) for vehicle inertial dead-reckoning, via micro-
machined electromechanical systems (MEMSs) inside smart-
phones. They exploit the smartphone’s inertial data as inputs,
i.e., the three-axis linear accelerations by accelerometer and
the three-axis angular rates by the gyroscope, both measured
at the phone’s coordinate system. Instead of directly double
integrating accelerations into distance (�xt = ∫ ∫

at dtdt),
they estimate the vehicle’s heading Ht , project the phone’s
accelerations as its forwarding accelerations a′

t = Ht · at , and
then compute the location variations as �xt = ∫ ∫

a′
t dtdt for

vehicle tracking.
In practice, drivers may place the smartphones with arbi-

trary postures in the vehicle; thus, the phone’s coordinate
system (X p, Y p, Z p) is not always aligned with the vehicle’s
(X v , Y v , Z v ). The EKF is a widely used solution to estimate
a smartphone’s posture (see Fig. 3). Specifically, the EKF
algorithm initializes the vehicle’s attitude and motion models,
and leverages the gyroscope to continually update the vehi-
cle’s corresponding states due to practical measurements, thus
deriving the heading direction Ht .

However, due to the low quality of inertial sensors and the
diversity of crowdsourced smartphones, extreme noises and
outliers appear frequently, and they are easily accumulated to
unbounded location errors.

III. OBSERVATION AND CHALLENGES

In this section, we conduct a series of experimental studies
on large-scale crowdsourced datasets, investigate the impacts
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TABLE I

DATASET INFORMATION

Fig. 4. Dedicated measurement by a mold with six smartphones. (a) Mold
with six phones. (b) Dedicated IMU device.

of smartphone inertial sensors on tracking vehicles, and
present our observations.

A. Data Source

In order to explore the influence of inertial sensors for
crowdsourced vehicle tracking, we have collected millions of
driving trajectories by the DiDi ride-hailing platform. Specifi-
cally, we classify our data source into two categories, i.e., the
crowdsourced dataset and the dedicated dataset. Details are
shown in Table I.

1) Crowdsourced Dataset: Our large-scale real-world
crowdsourced dataset is collected by the DiDi platform in
two urban cities (Beijing and Shenzhen) in China between
December 1 and 30, 2020. The training data are gathered from
876 phones during 308 driving hours, covering 17 195-km dis-
tances. The test data are from 829 phones during 191 driving
hours, covering 5591-km distances.

2) Dedicated Dataset: Since the crowdsourced data lack the
ground truth of the smartphone’s posture, we build a mold to
hold six smartphones with different placements, as shown in
Fig. 4(a). Meanwhile, we leverage a dedicated IMU device [see
Fig. 4(b)] in the same vehicle and collect its measurements as
the inertial ground truth.

B. Observations

The vehicular motion is typically a combination of rotation
and translation movements. Thus, we investigate two motion
factors, i.e., angular velocities measured by the gyroscope and
linear accelerations measured by the accelerator, both in the
smartphone’s coordinate system. In order to explore the errors
caused by inertial noises, we fix a smartphone and align it
with the vehicle; thus, the smartphone’s inertial readings are
approximated as the vehicles.

1) Gyroscope: The gyroscope measures real-time angular
rates (w p

X , w
p
Y , w

p
Z ) around the X p-axis, the Y p-axis, and the

Z p-axis in the smartphone coordinate system, respectively.

Fig. 5. Two turns with GPS trajectory and the corresponding gyroscope
drift error in 1 min. (a) Left turn. (b) Drift error in left turn. (c) Right turn.
(d) Drift error in right turn.

TABLE II

SKEWNESS AND KURTOSIS IN DIFFERENT ROADS

Theoretically, with continuous integration on angular veloc-
ities, we derive the vehicle’s deading direction for tracking.
However, due to the low quality of MEMS’s gyroscope, its
readings are affected by numerous noises, such as the constant
bias, thermomechanical white noise, and flicker noise [12].

To investigate the impact of gyroscope errors on rotational
measurements, we perform continuous integration on angular
rates in straight road segments and turning road segments,
respectively. Straight segments are defined as their angular
variation less than 10◦ within 1 min, and turning segments
denote the ones with more than 45◦. The ground truth is
measured by a dedicated IMU device, as described in our
dedicated dataset. We compared their angular drift errors
(the angular difference between ground truth and integration
results) in unit time.

An interesting finding is that the drift errors of left turn
and right turn have the same amplitude but inverse value,
as depicted in Fig. 5. Based on the skewness and the kurtosis
value in Table II, we observe that no matter driving on a
turning road or straight road, neither the skewness nor the
kurtosis of drift errors is closed to zero. In addition, six
phones have the same potential manifestation. All phenomena
demonstrate that the gyroscope’s drift errors do not follow the
normal distribution.

2) Accelerometer: Accelerometer measures the three-axis
linear accelerations (a p

X , a p
Y , a p

Z ) in smarpthone’s coordinate
system. The types of accelerator’ drift errors [12] are anal-
ogous to the gyroscope, expect the arising errors due to the
double integrations for distance.
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Fig. 6. Velocity and orientation comparison between two smartphones with the same type of MEMS sensors. (a) Trajectories on the map. (b) Linear
acceleration errors. (c) Angular rate errors.

TABLE III

SKEWNESS AND KURTOSIS IN ACCELERATING AND DECELERATING

To investigate the impact of linear accelerations, we extract
the accelerating and decelerating segments within 5-s intervals
in straight roads and calculate the integrated drift errors on
six smartphones. The ground truth is also supported by the
dedicated IMU device. Although its skewness and kurtosis
are closed to zero (see Table III), their corresponding z-sore
does not satisfy the hypothetical conditions (−1.96 ≤ z-score
≤ 1.96), while the inspection level α = 0.05. As a result,
the drift errors of the accelerometer also disobey the normal
distribution.

3) Inertial Sensor With the Same Type: In order to ana-
lyze the impact of the type of inertial sensors in different
smartphones, we deploy two smartphones with the same type
in the same vehicle. We leverage a 10-s sliding window to
process the temporal sequence and calculate its accumulated
errors. As depicted in Fig. 6, the linear acceleration errors
on Phone #1 and Phone #2 have an opposite error trend.
When acceleration changes in (0, 1), Phone 1 gets a lower
error, while Phone 2 obtains much more. Their maximum
orientation errors are also different when the average angular
velocity is at 0.3 ◦/s. The experimental results demonstrate that
different smartphones with the same type perform distinctively
in accelerations and angular rates, even at the same time in
the same vehicle.

C. Challenges

Based on our observations, the technical challenges of
city-level vehicle inertial tracking are summarized as follows.

1) Arbitrary Posture of Smartphones: Drivers have their
own preference to place the smartphone in a vehicle; thus,
the posture of the smartphone in the car is arbitrary, and its
coordinate system cannot always align with the vehicles. The
exiting EKF-based heading estimation method is affected by
the low-quality MEMS sensors in smartphones.

2) Inconstant Inertial Errors: The inertial errors are vary-
ing dramatically via crowdsensing. The drift errors of the

accelerometer or gyroscope do not follow the normal distribu-
tion, and the direction of angular errors is the inverse between
left and right turns. Thus, we cannot adopt a general error
distribution model to fit all smartphones. A possible approach
is to leverage the deep learning method for temporal sequence
learning, which captures long-term dependencies instead of
double integrations.

3) The Diversity of Smartphones: Due to the different
manufacturers of commodity inertial sensors, we observe that
different smartphones proverbially achieve various localization
accuracies. A straightforward solution is to customize the
parameters for each type of smartphone. However, to our
surprise, two smartphones with the same type of MEMS
sensors still have distinct localization performances even in
the same car.

D. Design Guidelines

To address the above challenges, we propose a novel vehicle
inertial learning framework. As depicted in Fig. 7, it is
comprised of three phases.

1) Coordinate Transformation: We explore a PCA-based
pose estimation algorithm to derive smartphone’s place-
ment in the car and further transform the smart-
phone’s inertial dynamics into the vehicle’s (see
Section IV).

2) Inertial Sequence Learning: We propose a deep
sequence learning model to settle the inconstant noises
of inertial measurements and produce vehicle’s move-
ments (see Section V).

3) Customized Model Refinement: After training a general
model among crowdsourced smartphones, we refine the
customized model of individual smartphones and derive
accurate trajectories (see Section VI).

IV. COORDINATE TRANSFORMATION

Since drivers may place their smartphones with arbi-
trary postures during driving, the phone’s coordinate sys-
tem is not always consistent with corresponding vehicles;
thus, its three-axis accelerations (a p

X , a p
Y , a p

Z ) and angu-
lar rates (w p

X , w
p
Y , w

p
Z ) cannot be directly used as vehi-

cle’s motion dynamics. Suggesting every driver placing the
phone in an absolute vertical posture is unconscionable and
offensive. In this section, we explore a principal component
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Fig. 7. System overview with three phases, i.e., coordinate transformation, inertial sequence learning, and customized model refinement.

Fig. 8. Workflow of phone pose estimation, consisting of two steps: estimating vehicle’s three axes in corresponding smartphone’s coordinate system and
constructing the relative rotation matrix to transform the inertial dynamics.

analysis (PCA)-based motion transformation algorithm.1 As
shown in Fig. 8, it is comprised of two phases: estimating
the vehicle’s three axes and constructing the corresponding
rotation matrix.

A. Vehicle’s Axes Estimation

We propose a three-step algorithm to estimate the vehicle’s
three axes in contrast to the smartphone’s coordinate system.

Step 1 (Z v-Axis): When vehicles are driving on the hori-
zontal plane, the Z v-axis is exactly opposite with the gravity
direction. Since there are always slight vibrations during
driving, we adopt a low-pass Butter-worth filter to denoise the
signal and then normalize it to a unit vector z as the Z v -axis.

Step 2 (Y v-Axis): Intuitively, vehicle’s accelerations in
straight driving indicate its forwarding direction Y v -axis.
In practice, we observe that there are heavy noises due to
inevitable jolts; thus, we remove the turning regions (whose
angular variation is more than 45◦ in 1 min) and project
smartphone’s three-axis accelerations ap onto the horizontal
plane by the unit vector z (as shown in Fig. 9)

aproj = a p − (a p · z)z (1)

where aproj is the projected acceleration on horizontal plane.
Next, we aim to derive a vector w on horizontal plane,

which optimally depicts the variation of accelerations, i.e.,
w�aproj (the right part in Fig. 9). We regard w as vehicle’s
Y v -axis. Based on the orthogonality of a coordinate system,
the largest variance indicates the most separation. Therefore,

1This algorithm is adopted only when drivers initiate a ride or change
their smartphone’s placement during driving. Specifically, we observe that
the variation of smartphone’s placement causes sharp accelerations along all
three axes; thus, a simple threshold on the energy can identify such event.

Fig. 9. Phone’s acceleration projection and vehicle’s forwarding estimation.

our optimization target is defined as

max
w

tr
(
w�a proja�

projw
)

s.t. w�w = I (2)

where tr(.) denotes the variance value.
We propose a PCA-based algorithm to derive the ortho-

metric vector with the largest variance value, i.e., the max
principal component. Its details are presented as follows.

Step 2.1 (Normalization): For the projected accelerations
ai = (xi , yi , zi ), i = 1, . . . , k, where k is the sequence length,
we normalize them along each axis

āi =
(

xi − 1

k

k∑
i=1

xi , yi − 1

k

k∑
i=1

yi , zi − 1

k

k∑
i=1

zi

)
. (3)

Meanwhile, its covariance matrix is constructed as

Cov = 1

k
Ak∗3 A�

k∗3 (4)

where Ak∗3 = [ā1, ā2, . . . , āk].
Step 2.2 (Matrix Decomposition): There are two common

methods of matrix decomposition: 1) eigenvalue decomposi-
tion and 2) singular value decomposition (SVD). However, the
first requires that the input should be square matrix, which is
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not consistent with our source matrix A3∗k(k � 3). Therefore,
we leverage the SVD method to decompose the acceleration
matrix, i.e., Ak∗3 ≈ Uk∗r�r∗rVr∗3, where Vr∗3 denotes the
right singular vector, Ur∗3 is the left singular vector, and
�r∗r is a rectangular diagonal matrix. In addition, the largest
eigenvalue γ in � corresponds to the j th line vector of V ,
whose transpose is the expected Y v-axis y.

Step 3 (X v -Axis Estimation): Based on the Y v-axis and the
Z v -axis, we derive the rest X v -axis as their cross-product

x = y × z. (5)

Thus, x, y, and z are orthogonal with the others.

B. Rotation Matrix Construction

Since every axis vector denotes an orthogonal direction for
dimensionality reduction, we concatenate three-axis vectors
in columns to derive the rotation matrix R p

v = [x, y, z],
which presents the rotation relationship from smartphone’s
coordinate system to the vehicles. Next, we transform the
smartphone’s inertial readings into vehicle’s motion dynamics
in its own coordinate system, i.e.,

av = a p R p
v (6)

wv = w p R p
v . (7)

In addition, in order to evaluate the accuracy of the esti-
mated poses, we need to calculate the Euler angles of smart-
phones in contrast to vehicles. Note that the rotation matrix
can be decomposed of different Euler angles with different
axis rotation orders, e.g., x − y − z, z − y − x , or y − x − z.
Besides, the positive direction of rotation is defined based on
the right-hand rule. Specifically, suppose that we rotate the
smartphone’s coordinate system (X p, Y p, Z p) to align with
the vehicle’s (X v , Y v , Z v ) in the z − y − x order; the rotation
matrix R p

v is decomposed as

R p
v =

⎡
⎣ r11 r12 r13

r21 r22 r23

r31 r32 r33

⎤
⎦ = Rz(γ ) ∗ Ry(β) ∗ Rx(α)

=
⎡
⎣ cos(γ ) − sin(γ ) 0

sin(γ ) cos(γ ) 0
0 0 1

⎤
⎦

⎡
⎣ cos(β) 0 sin(β)

0 1 0
− sin(β) 0 cos(β)

⎤
⎦

×
⎡
⎣ 1 0 0

0 cos(α) − sin(α)
0 sin(α) cos(α)

⎤
⎦ (8)

where Rx , Ry, and Rz denote the rotation along the X p-,
Y p-, and Z p-axes, respectively. Thus, the Euler angles
(α, β, γ ) are derived γ = arctan 2(−r12, r11), β = arcsin(r13)
and α = arctan 2(−r23, r33) with the z − y − x rotation order.

V. INERTIAL SEQUENCE LEARNING

After coordinate transformation, we derive the inertial
dynamics in the vehicle’s coordinate system. Since the inertial
error is always volatile and inconstant, a general error distribu-
tion model is hard to construct for crowdsourced smartphones.
Instead of conducting inertial dead-reckoning, we explore an
inertial sequence learning framework to produce a neural
network that minimizes the differences between actual inertial
readings and corresponding trajectories.

Fig. 10. Variations of longitude and latitude are the same for two traces AB
and A′ B ′, while their spherical distance dis1 and dis2 are different.

A. Model Formulation

Intuitively, we aim to estimate the location variance
(�lon0:t ,�lat0:t ) during each time interval. However, the
spherical distance on the same longitude varies in differ-
ent latitudes (see Fig. 10). Instead, we aim to predict the
speed variations and split them into the velocity and bearing
(�v0:t ,�o0:t ). Specifically, �o0:t is an intricate nut to crack;
thus, we suppose that the angular variation of bearing is within
(0, 360), and the clockwise direction is positive, and vice
versa.

The original inputs from smartphones consist of the
three-axis accelerations (a p

X , a p
Y , a p

Z ), three-axis angular veloc-
ities (w p

X , w
p
Y , w

p
Z ), and three-axis gravity accelerations (g p

X ,
g p

Y , g p
Z ); all are collected at 50 Hz. When vehicles are driving

in outdoor scenarios, we leverage the GPS location (longitude
and latitude), speed, and bearing (v, o) as the ground truth
(1 Hz) to train the model.

In order to deploy the inference model in smartphones,
we cannot directly concatenate the raw 9-D inertial data as-is,
which involves complex neural networks to capture such an
amount of data. Instead, we extract the most efficient features
instead of raw inertial data as model inputs. Specifically, the
features we exploit include: 1) the initial speed init_speed and
bearing init_bearing (vehicle’s heading direction) at the initial
point, i.e., the last valid GPS information and 2) the accelerom-
eter features, gyroscope features, and gravity features, and we
calculate the corresponding mean, min, max, std, var, and
sum values at a 1-s interval. Therefore, the data amount of
a 1-s inertial sequence is reduced from 3 × 3 × 50 = 450 to
3×3×6 = 54, thus decreasing the memory to about only 1/8
of the original.

B. TCN Architecture

We use a TCN framework with residual blocks to learn
the inertial sequence. Although recurrent neural networks
(RNNs), e.g., the long short-term memory (LSTM) and the
gated recurrent unit (GRU), have become the most popu-
lar architectures for sequence modeling, they are inefficient
on mobile devices due to a large number of parameters.
Instead, we adopt the TCN, which is more suitable for
deployment on smartphones with a long-range receptive field.
Specifically, the residual blocks used in TCN have been
proved to be an effective way to train deep networks, which
enables networks to transmit information in a cross-layer
manner.
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Fig. 11. Our TCN framework for vehicle inertial tracking, including nine layers of FC layers and three TCN residual blocks.

Fig. 12. Implementation details of a TCN residual block with dilated
causal convolution, weight normalization, ReLU, batch normalization, spatial
dropout, and a residual connection.

As shown in Fig. 11, the hyperparameters of our model
include nine layers of a fully connected (FC) network and three
TCN residual blocks (batch size of 128 and the learning rate
of 0.001). We use the rectified linear unit (ReLU) activation
function in each TCN residual block, whereas the Leaky-ReLU
is used for the first six layers of the FC network. In each
TCN residual block (see Fig. 12), we apply the dropout rate
of 0.5 to mitigate overfitting. Meanwhile, we use the weight
normalization and batch normalization to accelerate model
convergence and the Adam optimizer to iteratively update
network weights.

Since our objective is to estimate both velocity and ori-
entation estimates, a straightforward method is to use the
weighted SmoothL1Loss as loss metric, which is less sensitive
to outliers than the mean squared error (MSE) and prevents
exploding gradients in extreme cases. The SmoothL1Loss is
a popular metric to for loss computation, i.e.,

L(x̂, x) =
{

|x̂ − x | − 0.5, |x̂ − x | > 1

0.5|x̂ − x |2, |x̂ − x | ≤ 1.
(9)

However, when combining velocity and bearing estimates,
it leads to a series of problems. First, the variation of ori-
entation in unit time is much larger than velocity, as shown

TABLE IV

COMPARISON OF THE DISTRIBUTION OF THE SPEED AND

THE BEARING VARIATIONS DURING TRAINING

in Table IV. Thus, the model inclines to calibrate orientation
mistakes rather than the velocity. Besides, the loss value
seriously accumulates as time passes by, as shown in Fig. 13.

Therefore, we customize the loss computation. Specifically,
we add an enhancement factor α on velocity item to balance
the two subnetworks and devise a time attenuation function
w(t) to reduce loss accumulation, i.e.,

w(t) = exp

(−t2

2σ 2

)
(10)

where σ is time attenuation factor and t is the timestamp. The
intuition of the weight w(t) is to concentrate on features from
current time series. Finally, our customized loss function is
presented as

Loss =
N∑

t=1

w(t)[αL(�v̂t ,�vt ) + L(�ôt ,�ot)]. (11)

VI. CUSTOMIZED MODEL REFINEMENT

With the large-scale database collected via crowdsensing,
we have established a general location inference model among
all users. However, based on our observation in Section III,
vehicle’s tracking accuracy differs significantly even on the
same type of smartphones (see Fig. 6). A straightforward
approach is to customize the location inference model to fit
individual smartphones. Though appealing, it has two inherent
limitations. First, it will lead to privacy concerns if people
upload their personal driving trajectories via the Internet.
In addition, the deep neural networks in customized learning
may cost dozens of minutes for training on individual smart-
phones. Thus, the realization of customized learning becomes
a nontrivial journey for both on-cloud training and on-device
training.
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Fig. 13. Training comparisons between SmoothL1Loss and our customized
loss metric. The data window is set as 10 s.

Fig. 14. Mechanism of customized model refinement. We train a general
model via mobile crowdsensing and refine it via personal online data.

To address the above issues, we propose a customized
model refinement mechanism to address the diversity of
crowdsourced smartphones. As depicted in Fig. 14, its training
process comprises three phases:

1) Cloud Training: We use the crowdsourced dataset to
train a general location tracking model. This phase is
typically performed on the cloud. The trained model
is called a general model. After achieving the expected
accuracy on the crowdsourced dataset, we dispatch this
general model to all users’ devices.

2) Off-Line Training: On each mobile device, we leverage
its historical personal data and retrain the general model.
The customization is mainly achieved by synthesizing
the dataset that users refuse to upload to the Internet.
Finally, we produce and deploy the customized model
on individual smartphones.

3) Online Refinement: During the vehicle’s outdoor driving,
each smartphone collects the latest inertial data with
reliable GPS locations. We use such data to refine the
user-specific model in real time and continuously update
our personal inference model.

Based on this customized refinement mechanism, we derive
a more accurate tracking model for individual drivers without

Fig. 15. Multistage model training mechanism. We utilize ➀ (the
crowdsourced dataset) to produce the general model, refine it with
➁ (the private dataset in April) for off-line training, and further refine it
with ➂ (the private dataset in May) for online training.

TABLE V

METHODOLOGY FOR MODEL TRAINING AND TESTING

incurring privacy concerns. Note that off-line training and
online training are both scheduled when devices are in charg-
ing mode, minimizing the impact of battery usage.

VII. EVALUATION

A. Methodology
1) Training and Testing Datasets: As we illustrated in

Section III, our crowdsourced data are gathered via the DiDi
ride-hailing platform in Beijing and Shenzhen, China. The
detailed description is depicted in Table I. As a supplement,
our training dataset is at the duration of 10 s, while the testing
dataset is at 60 s. To distinguish the crowdsourced dataset and
the dedicated dataset, we mark the crowdsourced dataset as ➀,
the dedicated dataset in April as ➁ for off-line training with
the historical data, and the dedicated dataset in May as ➂ to
simulate online training and inference with the latest data (as
shown in Fig. 15). In addition, the datasets ➁ and ➂ are both
collected by six smartphones with different placements in the
mold [as shown in Fig. 4(a)]. The ratio for training/testing split
in each dataset is 3:1. Detailed descriptions for customized
model training are shown in Table V.

2) Compared Alternatives: We compare our performance
with EKF, LSTM, and GRU algorithms for vehicle inertial
tracking. The EKF approach is currently applied by many
ride-hailing platforms to track vehicles without GPS, and
we adopt a maximum likelihood estimation (MLE) solu-
tion to produce its parameters under the normal distribution
assumption. The LSTM and GRU are implemented by replac-
ing the TCN block with LSTM (torch.nn.LSTM) and GRU
(torch.nn.GRU). Their special network parameters include
hidden_size = 256 and hidden_layer = 3.

3) Training Details: During the training process, we lever-
age the early stopping method that can prevent overfitting.
When the loss on the testing dataset remains continuously sta-
ble after several times, we stop training the model. Our training
and validation losses are stabilized at 1.55 and 1.67 after
50 epochs.

B. Phone Pose Estimation

We have derived the rotation matrix between the vehi-
cle’s coordinate system and the phone’s, and constructed the
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Fig. 16. Pose estimation errors along three axes with different window sizes. We use the box diagram to depict the errors at the maximum, 75th percentile,
medium, 25th percentile, and minimum values, respectively. (a) X-axis. (b) Y -axis. (c) Z -axis.

Fig. 17. Pose estimation errors for six smartphones with different placements.
The ground-truth placements of smartphones are shown in Fig. 4(a).

corresponding Euler angles via the z − y − x rotation order.
Here, we measure the pose estimation accuracy with the six
different placements in the mold [as shown in Fig. 4(a)]. These
poses hopefully cover all common driving scenarios.

1) PCA Time Window: An effective and short-range time
window is crucial for the accuracy and real-time posture
prediction. In order to evaluate the appropriate time window
for pose estimation, we extract 20 trajectories on straight
roads and test the window size from 1 ∼ 10 min with a
sliding window of one second. We leverage the box diagram
to display pose estimation errors at the maximum, 75th
percentile, medium, 25th percentile, and minimum values,
respectively. As shown in Fig. 16(a)–(c), the pose estimation
errors in the X-axis and the Y -axis reduce significantly with
the increasing window size, while the errors in the Z -axis
remains highly accurate (less than 3◦). However, a long time
window impedes real-time performance in case drivers move
their smartphones. To balance the accuracy and delay of pose
estimation, we adopt a 5-min time window in our system.

2) Posture Accuracy: We use the 5-min time window to
predict six different placements with our PCA-based pose
estimation algorithm. Fig. 17 shows the accuracy along three
axes. We observe that the estimated pose errors are consis-
tently smaller than 12◦ for all six poses. These results indicate
that our pose estimation algorithm is effective and robust to
transform the inertial dynamics from smartphones to vehicles.

TABLE VI

MAE ON LOCATION INFERENCE WITH DIFFERENT LOSS METRICS (M)

C. Inertial Sequence Learning

1) Loss Optimization: Directly regarding the
SmoothL1Loss as the loss metric leads to serious error
accumulations and longer time for convergence (as shown in
Fig. 13). In addition, it cannot balance the weights of speed
and bearing estimates. Instead, our customized loss metric
involves the time attenuation function and enhancement factor
to speed up the training process. Besides, we evaluate the
continued tracking errors in 30- and 60-s durations in Table VI
in both Beijing and Shenzhen, respectively. Compared with
the SmoothL1Loss, our customized loss metric significantly
reduces the tracking errors in location inference (almost by
two-thirds).

2) Tracking Accuracy: We aim to evaluate the track-
ing accuracy of vehicles driving after a certain duration,
e.g., 30 s in Fig. 18 and 60 s in Fig. 19, respectively.
The mean absolute error (MAE) is used as the loss metric,
which compares the difference between the ground truth and
our predicted location after such duration. Since there are few
opportunities to calibrate a vehicle’s location in GPS-blocked
environments, longer tracking duration inevitably accumulates
tracking errors with higher MAE values. Compared with EKF,
GRU, and LSTM, we observe that our TCN-based approach
achieves the least MAE values, both in the short and long
terms. Besides, there are only 1/3 parameters of our inference
model compared with GRU and LSTM; thus, ours is more
suitable for deployment on smartphones. Fig. 20 demonstrates
our effectiveness in an overpass in Beijing and a tunnel in
Shenzhen for real-time tracking without GPS. Compared with
the EKF that is currently used by the DiDi platform, our
method performs more accurate trajectories.

D. Online Customized Learning
We first evaluate the accuracy of the customized model

during off-line training and then leverage the online driving
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Fig. 18. Tracking vehicles after 30-s duration in (a) Beijing and (b) Shenzhen.

Fig. 19. Tracking vehicles after 60-s duration in (a) Beijing and (b) Shenzhen.

data to evaluate the accuracy improvement by online
training.

1) Effectiveness of Pose Estimation and Off-Line Cus-
tomized Learning: In the off-line training process, we com-
prehensively compare the model performance based on
two guidelines: 1) transforming coordinate with PCA-based
pose estimation and 2) retraining customized model with
user-specific data in April. Finally, we achieve four alterna-
tives, as shown in Table V.

Fig. 21 denotes the substantial improvement contributed
by pose estimation and off-line customized learning. When
we leverage the off-line user-specific data to retrain the
general model and produce the customized model (off-line
model without PCA), it reduces the localization errors from
13.114 to 11.437 m (↓12.79%) for 10-s inference. In addition,
if we combine the pose estimation and customized retraining
together (off-line model with PCA), it further reduces the
tracking errors into 8.0 m (↓38.99%). The experimental results
demonstrate that both pose estimation and off-line customized
retraining improve tracking accuracy.

2) Effectiveness of Online Customized Learning: Off-line
customized training, i.e., training and testing with the historical
user-specific data in April, achieves respectable improvements.
In addition, online training is able to update the customized
model by leveraging the latest trajectory from a specific
driver. As shown in Fig. 22, the online training (online
model with PCA) further reduces the tracking errors from
7.802 m by the off-line model to 6.818 m (↓12.61%). It indi-
cates that, although our model has been well customized
by off-line training with historical user-specific data, it can
still be enhanced by the online data. This inspires us to
continuously exploit the latest inertial data into customized

training and fine-tune our model to improve tracking
accuracy.

E. Real-World User Experience

Due to our collaboration with the DiDi ride-hailing plat-
form, it has applied our model to its real-world mobile
application in 7.59 million devices (3.43 million daily active
devices). Specifically, based on their statistics, our model has
conducted 4.26 billion location inferences per day and costs
21.2 ms as average inference delay.

In addition, we also evaluate the practical user experience of
our model in real-world tunnels. Specifically, we calculate the
distance between the practical location at tunnel exit (by GPS)
and our last inferenced location and regard a location gap if the
distance is larger than 65 m and an extreme gap if the distance
is larger than 130 m. Finally, we compute the gap rate (percent-
age of orders with gaps) and the extreme gap rate (percentage
of orders with extreme gaps). These two metrics are practically
used to measure the user experience in the DiDi platform.

Table VII shows the online user experience of traditional
EKF and our TCN model with different hyperparameters.
We observe that, when the speed enhancement factor α = 6
and the time attenuation factor δ = 20, both gap rates and
extreme gap rates achieve the best. Compared with the EKF,
our TCN model reduces gap rates from 13.529% to 10.271%
(↓24.01%) and extreme gap rates from 8.3% to 6.108%
(↓26.4%).

VIII. RELATED WORK

A. Phone Pose Estimation

Since the phone’s coordinate system is not always aligned
with the vehicle, the inertial readings of the smartphone
cannot be directly used to infer the vehicle’s movement.
There are many studies focusing on the phone’s heading
estimation for indoor localization, navigation, and tracking.
Walkie-Markie [13] leverages the reading of the gyro-
scope to estimate the heading for indoor pathway map-
ping. Wang et al. [14] design the UnLoc system to employ
the gyroscope and compass for accurate heading estimation
in indoor dead-reckoning. Candan and Soken [15] propose
two covariance-tuning methods to augment the Kalman fil-
ter (RKF) algorithm for IMU’s attitude estimation. Another
solution is to build a posture relationship between smartphones
and vehicles. Wang et al. [16] leverage the embedded sensors
to predict the smartphone’s posture in car. Gao et al. [17]
compared of the shadow tracking method and the 3-D tracking
method.

B. Indoor Localization

At present, vehicle tracking services are usually based on
the GNSS [18]. Drivers also expect to track and navigate
their vehicles anywhere and anytime, even in underground or
blocked environments [18], such as tunnels and overpasses.
However, when driving into such scenarios, the satellite signal
is in low intensity and cannot provide accurate locations,
and inertial tracking errors accumulate to extreme values.
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Fig. 20. Examples of real-time vehicle inertial tracking in (a) overpass in Beijing and (b) tunnel in Shenzhen.

Fig. 21. Effectiveness of off-line customized learning (refinement with
the dataset ➁) and pose estimation with PCA. All results are tested in the
dataset ➁.

Fig. 22. Effectiveness of online customized learning (refinement by the latest
online dataset ➂). Both results are tested in the latest dataset ➂.

Ultrasonic wave [19], Wi-Fi [20], and Bluetooth [21] tech-
nologies are mainly used for indoor localization. However,
these solutions highly depend on dedicated deployments in
the environment, e.g., users need to carry special devices
for sensing the environment; thus, it constraints the wide
deployment of indoor location-based services.

C. Inertial Tracking

The inertial dead reckoning has been widely used for
indoor localization, e.g., step counting [22]. Mapcraft [23]

TABLE VII

USER EXPERIENCE WITH REAL-WORLD ORDERS (%)

uses the floor plan to reduce estimated errors of stride length
and heading direction. You et al. propose a hybrid method
based on IMU and RSSI [24] for pedestrian’s dead reck-
oning. Hilsenbeck et al. [25] leverage Wi-Fi fingerprints to
improve the tracking accuracy. Aghili and Su [26] present
a robust 6-DOF relative tracking method by combining the
noise-adaptive Kalman filter (AKF) and the inertial mea-
surement unit (IMU). However, they all rely on the step
counting results that are designed for pedestrians rather than
vehicles. Gao et al. [17] propose VeTrack to track vehi-
cles at low speeds in underground parking lots. It requires
a large number of landmarks (e.g., bumps and turns) to
calibrate a vehicle’s location, but such landmarks are prac-
tically sparse in tunnels and overpasses. In addition, the
inertial noises are always volatile and inconstant; thus, they
are practically hard to eliminate and cause extreme error
accumulation.

D. Sequential Deep Learning

RNN is a classic way to learn sequential data and has
been widely used in natural language processing [27], machine
translation [28], stream data processing [29], and traffic predic-
tion [30]. LSTM [31] is a special RNN that controls the trans-
mission state through gates. Recently, a convolutional neural
network (CNN) [32] has achieved breakthroughs in learning
sequence with better performance than RNN in learning long-
term sequences. As a unique CNN, TCN [33] realizes the
causal transmission of data by means of causal convolutions
and expands the receptive field by dilated convolutions; thus,
it is more flexible and efficient for mobile devices. In recent
years, there has been explosive growth in applying deep neural
networks for inertial tracking. IONet [34] abandons traditional
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steps counting and explores an inertial sequence learning
approach (i.e., LSTM) to cure the curse of drift in IMU.
Backprop KF [35] uses DNNs to extract effective features
and feeds them to a predefined physical model to improve
the filtering algorithms. Brossard et al. [36] combine the
Kalman filter and deep neural networks to dynamically adjust
filter parameters. Chen et al. present DynaNet [37], a hybrid
deep learning and time-varying state-space model, which
is trained end-to-end and performs excellently on a num-
ber of physically challenging tasks, including visual odom-
etry, sensor fusion for visual-inertial navigation, and motion
prediction.

IX. CONCLUSION

In this article, we conduct extensive experiments on
real-world crowdsourced traffic datasets to explore the key
factors of vehicle inertial tracking. We summarize three tech-
nical challenges and propose a novel vehicle inertial learn-
ing framework. It consists of a coordinate transformation
algorithm, inertial sequence learning model, and customized
retraining mechanism. The experimental results show our
improvements in accuracy, robustness, and user experience of
vehicle tracking in GPS-blocked environments.
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