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Help You Locate the Car: A Smartphone-Based
Car-Finding System in Underground Parking Lot

Xiaotong Ren , Shuli Zhu , Feng Liu , Haitao Li, Haohang Li, Xuan Xiao ,
Ruipeng Gao , and Zhang Zhang

Abstract—While location awareness is common outdoors
due to global navigation satellite system (GNSS) systems
and devices, pedestrians are back into darkness indoors
such as in underground parking lots. We often forget where
we parked the car and get confused by such maze-like
structure. In order to help drivers find their cars without any
additional equipment and map support, we propose a car-
finding navigation system that only relies on smartphones.
It automatically identifies the user’s drop-off point, records
the walking trajectory from car’s location to the exit,
and provides fine-grained return navigation to help user
back to the car. To address the accuracy and diversity
of pedestrian tracking, we propose an inertial sequence
learning framework based on outdoor crowdsourced trajectories, which avoids the dedicated efforts on groundtruth
collection for model training. We also explore a smartphone posture detection method that supports multiple placements
of the smartphone, and a support vector machines (SVM)-based trajectory refinement algorithm with only inertial
readings. Besides, we explore a particle filter framework to track and navigate the pedestrian in real time. We have
developed a prototype and conducted a series of experiments in multiple underground parking lots, and the results have
demonstrated our effectiveness compared with the state-of-the-art.

Index Terms— Indoor localization, inertial tracking, mobile crowdsensing, vehicle navigation.

I. INTRODUCTION

NOWADAYS, driving has become a common way of
travel, and frequently we drive into underground parking

lots in shopping malls and transportation junctions (Fig. 1),
where we may forget where we have parked in such complex
structures. While it is easy to acquire outdoor locations with
the global navigation satellite system (GNSS), it is difficult
in GNSS-denied environments such as underground parking
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lots. Therefore, it is essential to record users’ drop-off points
and help them return to the car from an exit. Fortunately,
smartphones capture plenty of data through multiple sensors
(e.g., inertial measurement unit (IMU), WiFi, and Bluetooth),
which could be exploited for real-time positioning and
navigation.

Regarding pedestrian tracking, a straightforward method is
using the Kalman filter [1], [2] over inertial readings. However,
it causes unbounded tracking errors due to the accumulation
of double integration. To overcome this issue, step counting
[3], [4], [5], [6] techniques have been proposed which
effectively prevent double accumulated errors. Nevertheless,
determining an appropriate stride length beforehand for
each user remains challenging. Another approach involves
utilizing environmental sensing information as landmarks
for localization, e.g., geomagnetic fields [7] and WiFi
signatures [8], [9], but it is difficult to recognize such
landmarks and construct the fingerprint dataset in underground
parking lots due to the sparse coverage. Furthermore, there are
already several IMU datasets (e.g., RIDI [10], RoNIN [11],
and OxIDD [12]) designed for indoor scenes, but most of them
rely on accurate calibration and require additional equipment
for ground truth collection, preventing them for large-scale
deployment.
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Fig. 1. Example scenario for car finding. When pedestrians drive to
the mall, they park their cars in the underground parking lot and walk
inside the mall. When they leave the mall, they enter from the exit of the
parking lot and walk back to their cars. Note that pedestrians frequently
forget where their cars are parked, especially in large and complex
underground parking lot.

To solve these problems, we propose a car-finding
navigation system that only relies on smartphones. This
innovative solution automatically detects the drop-off point
and records the user’s walking trajectory from there to the
exit. After that, upon returning to the parking lot, it generates
the user’s previous path for efficient navigation toward the
vehicle. Remarkably, this system only uses IMU data from
smartphones and does not rely on any additional equipment
or map collection, thus it can be easily deployed in any
underground parking with zero efforts.

However, there exists three challenges during our explo-
ration. First, it is difficult to gather accurate and sufficient
ground truth data to train the indoor inertial tracking model
without additional equipment. To address this issue, we devise
an inertial sequence learning framework which is trained
by outdoor global positioning system (GPS) trajectories, and
it can be directly applied for indoor inference. Second,
because the built-in IMUs in smartphones usually produce
low-quality inertial readings that are prone to extreme
noises. Therefore, we employ a bearing estimation method
with posture detection, posture rotation, and drift error
correction to mitigate the errors during tracking. Third, unlike
vehicles that always ride following the designated lanes,
pedestrian’s movement exhibits randomness which diminishes
the reliability of navigation. Thus, during the return period,
we employ a particle filter approach to track the real time
position and provide fine-grained navigation.

Our early work on indoor pedestrian tracking [13] was
published in 2022. However, the early work can only
realize the estimation of pedestrian trajectory, and do not
include the guidance for pedestrians to find cars in reverse.
In addition, we use more widely applicable smartphone
posture recognition, data rotation methods, and new trajectory
refinement methods in this study.

To sum up, our contributions are listed as follows.
1) We device an inertial sequence learning framework.

It uses the IMU data collected outdoors to train the
model with GPS data collected outdoors as groundtruth.
In indoor scenarios, we only use IMU data for inference.
In this way, the challenge of collecting groundtruth

indoors is effectively addressed and our method can be
applied in various underground parking lots.

2) A precise pedestrian bearing estimation method is
proposed. The proposed approach utilizes accelerometer
(acc), gyroscope (gyro), and gravity accelerometer
(gvt) data to identify various smartphone postures and
perform a rotation for the gyroscope data. Additionally,
a trajectory drift error correction algorithm based on
support vector machines (SVM) turning detection is
employed to further reduce the influence of IMU data
drift error.

3) A pedestrian locating method based on particle filter
is proposed. The method utilizes the trajectory from
the drop-off point to the exit to create a road-based
constraint for updating the state of the particle. This
approach results in a more precise prediction of the
user’s location.

4) We performed experiments in different scenarios to
verify the performance of the method, compared it
with other pedestrian tracking methods, and developed
a prototype.

Specially, this article is organized as follows. In Section III,
we introduce the overall framework and workflow of the car
finding system. In Section IV, the inertial sequence learning
framework is introduced, and the bearing estimation method
is introduced in Section V. In Section VI, we introduce
the pedestrian tracking method in the process of reverse car
finding. In Section VII, we focus on the experimental results
of the method, and give the conclusion in Section VIII.

II. RELATED WORK

A. Basic Methods of Trajectory Estimation
The conventional approach for pedestrian tracking involves

integrating the acceleration and angular velocity data of
pedestrians to derive their speed and angle changes. However,
due to the inherent noise in sensors, it is necessary to apply
a Kalman filter [1] for filtering before integration. Aghili and
Su [2] propose a robust 6-DOF relative tracking method that
utilizes Kalman filter and IMUs. Nevertheless, this method still
fails to completely eliminate sensor drift errors, which tend
to be amplified after repeated integration. The step counting
method [3], [4], [5] has emerged as a popular approach to
mitigate sensor drift errors in recent years. By leveraging
accelerometer data to detect pedestrian gait characteristics and
estimate step length, it enables the calculation of walking
distance. But due to the inherent challenge of accurately
setting a universal step length for all pedestrians using this
method, there exists an inevitable margin of error. To address
this issue, Mapcraft [6] leverages floor plans to minimize
estimated errors in both step length and heading direction
estimation; however, this approach is contingent upon the
availability of accurate maps.

B. Inertial Dead Reckoning
When it comes to the inertial dead reckoning, integration

of gyroscope data is commonly employed. However, the
utilization of gyroscopes often leads to significant errors.
To address this issue, certain methods have incorporated
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geomagnetic signals as an alternative. For instance, Muse
[7] utilized geomagnetic signals for correcting gyro signals.
Microsoft research introduced PathGuid [14], [15], an appli-
cation that leverages distinct characteristics of geomagnetic
signals at various locations within indoor environments as
landmarks for recording and calibrating pedestrians’ direction
and position. UnLoc [16] not only utilizes geomagnetic field,
but also considers specific patterns from WiFi and elevator
accelerometers as landmarks for pedestrian localization
purposes. Tong et al. [17] utilize principal component analysis
[18] to infer the direction of walking in their study.

C. Indoor Pedestrian Trajectory Dataset
RIDI [10] is the pioneering publicly available dataset

for indoor pedestrian tracking, including IMU data and
corresponding groundtruth. The IMU data are gathered using
ordinary mobile phones, while the groundtruth is obtained
through Google Tango mobile phones. Additionally, RIDI
stands as the first data-driven inertial navigation method that
computes pedestrian speed in the mobile coordinate system
and employs a multi-source fusion approach to estimate
heading. As an enhancement, Yan et al. [11] introduce the
RoNIN dataset which incorporates meticulous precalibration
and postcalibration procedures for each trajectory to minimize
errors arising from disparate equipment used during data and
groundtruth acquisition. At the same time, RoNIN employs
a depth model consisting of three different cores (long
short-term memory (LSTM), temporal convolutional network
(TCN), and ResNet) to extract pedestrian trajectories. ADVIO
[19] utilizes an iPhone 6s as an IMU collection device to pro-
vide pseudo groundtruth generated by their handcrafted inertial
odometry algorithm. However, the dataset itself is limited with
only 23 sequences available. On the other hand, OxIDD [12]
encompasses various acquisition postures and walking speeds
with groundtruth collected using Vicon technology, resulting
in a dataset of 158 sequences. Nevertheless, all of above
methods require additional equipment for data collection and
are restricted to fixed scenes where the necessary devices are
installed, thus rendering them unsuitable for our scenario.
In this article, we proposes a method that solely relies
on users’ mobile phones for collecting IMUs data and
groundtruth.

D. Wifi-Based Indoor Positioning Method
Using WiFi for positioning is a widely adopted approach

in the field of indoor positioning. Hilsenbeck et al. [20]
proposed the Hapi system, which utilizes off-the-shelf standard
WiFi technology to provide pseudo-3D indoor positioning.
Bell et al. [8] exploit WiFi fingerprints to enhance tracking
accuracy effectively. Moreover, Lee et al. [9] deployed a WiFi
positioning system on smartwatches, demonstrating improved
execution time and accuracy through location awareness
learning based on random forest algorithm. Additionally,
WiDeep [21] presents an innovative method that combines
depth models with WiFi signals for enhanced performance
in indoor positioning applications. The system is capable
of effectively mitigating the noise present in the received

Fig. 2. System overview. It consists of the leader phase and the follower
phase. In leader phase, we record the users’ trajectory from the drop-
off point to the exit, while in follower phase, our aim is to provide fine-
grained navigation for users helping them return to their cars.

WiFi signal and accurately capturing the intricate correlation
between the signals emitted by WiFi access points (APs)
and the mobile phone’s location. However, relying solely on
WiFi for pedestrian tracking and positioning within indoor
underground parking lots proves unfeasible due to significantly
weak WiFi signal coverage throughout most areas within such
facilities. Generally, only at the entrance and exit points can
relatively stronger WiFi signals be detected.

III. OVERVIEW

As illustrated in Fig. 2, the pipeline of our method consists
of two parts, namely the leader phase and the follower phase.
The leader’s objective is to record the trajectory from the
drop-off point to the exit. Initially, we perform drop-off
point detection to accurately identify when the user gets off.
Subsequently, while the pedestrian walks toward the exit,
we continuously track and record the corresponding trajectory.
In the follower phase, our aim is to provide navigation for
users, helping them return to their cars. Specially, we assume
that the exit remains consistent and generate a planned route
for navigation assistance. Concurrently, we employ real-time
tracking techniques with particle filter to estimate and update
the user’s location dynamically.

The leader phase contains two steps, i.e., drop-off detection
and pedestrian tracking. For the drop-off point detection, our
basic idea is that when the user’s status changes from driving
to static and further to walking, there is a drop-off point.
Thus, we define user’s status as {driving, walking, static}, and
design the process of drop-off point detection as Fig. 3 shown.
We use the triaxial combined acceleration value without
gravity acceleration to identify the user’s current status.
Additionally, to mitigate potential misidentification caused by
smartphone’s jitter, we incorporate a robust step counting
algorithm. Step counting uses IMU data and relies on the
combined acceleration of the triaxial acceleration. Since the
triaxial acceleration of IMU will show regular fluctuations
with time when pedestrian is walking, it is possible to judge
whether a pedestrian is walking and count the number of steps
through the change pattern of the peak and trough values in
a time window. Specifically, when observing the continuous
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Fig. 3. Workflow of drop-off point detection. When observing the
continuous increase of the number of steps while the user is walking,
we confidently determine that user has disembarked.

Fig. 4. Workflow of pedestrian tracking. To estimate walking speed,
we employ an LSTM-based model to infer changes in pedestrian indoor
velocity.

increase of the number of steps during walking, we confidently
determine that user has disembarked.

Next, the pedestrian tracking process commences.
We address speed estimation and bearing estimation as
separate tasks, following the workflow described in Fig. 4.
To estimate speed, we employ an LSTM-based model
trained on outdoor IMU and GPS data, utilizing only
accelerometer and gyroscope readings from smartphones
to infer changes in pedestrian velocity per second indoors.
For bearing estimation, a SVM-based model is employed
to detect smartphone posture, enabling us to appropriately
adjust gyro data since different postures yield distinct
representations of the user’s walking motion. Then, the
gyroscope integral method is utilized to calculate the change
in pedestrian bearing per second, enabling us to combine
speed and bearing change for trajectory estimation. However,
as mentioned above, traditional integration methods and
relatively cheap IMU sensors may cause significant drift
errors. To address this issue, we propose a postprocessing
approach for error drift correction. The fundamental idea
involves categorizing the user’s walking behavior into two
types: right angle turns and straight paths. We employ an
SVM-based turn detection method to identify turning points
in the trajectory. Subsequently, any bearing changes observed
during straight sections are considered as drifts and corrected
accordingly.

When the user intends to return to his car, we proceed to the
follower phase, whose workflow is described in Fig. 5. We first
generate the planned route by utilizing the pedestrian trajectory
stored in the leader phase. As shown in Fig. 6, we first flip
the trajectory, and then expand the road backbone by 3 m
on both sides as the boundary of the road. Subsequently, the
IMU data is fed into the same speed model and integration
method employed in the pedestrian tracking module to derive
the user’s speed and bearing change per second. These speed
and bearing changes are then utilized as influencing factors
within a particle filter framework, with constraints imposed
by the planned road boundary for updating particle status.
The result of particle position serves as an accurate estimation
of pedestrian location. Additionally, we extract turn point
information from the trajectory and provide users with timely
turn notifications when approaching these points.

Fig. 5. Workflow of follower phase. We construct the planning road
for navigation. For more precise localization, we use a particle filter
framework to track the user’s real time location.

Fig. 6. Planning road construction process. We first flip the trajectory
stored in the leader phase, and then expand the road backbone by 3 m
on both sides as the boundary of the road.

Fig. 7. Structure of inertial sequence learning framework. The speed
deep-learning neural network (DNN) model is trained by outdoor data
with GNSS data as groudtruth, and only use inertial data for indoor
inference. Instead of using raw data directly, we extract feature of inertial
data first.

IV. INERTIAL SEQUENCE LEARNING FRAMEWORK

For trajectory estimation, we adopt the scheme of PeTrack
[13], which divides user trajectory calculation into two parts:
speed estimation and bearing estimation. And in order to
obtain the speed without high cumulative error, we do not use
simple integration of accelerometer but use the deep learning
model to estimate. However, in underground parking lot, it is
difficult to obtain the groundtruth required for training the
model by relying on smartphones alone. Therefore, we propose
a framework where the model is trained in outdoor scenes
and used indoors, because in outdoor scenes, smartphone can
collect the IMU data with high accuracy GPS data which can
be used as the groundtruth.

Fig. 7 shows the structure of the framework. Because the
GPS signal is acquired at a frequency of 1 Hz, whereas
the IMU data are acquired at a higher frequency of 50 Hz,
we consider the IMU data sampled at 50 Hz along with
the corresponding GPS data within each second. And since
GPS provides the speed field, we utilize GPSSpd as the
groundtruth. Besides, instead of directly employing raw IMU
data as input, we extract features from the raw data. These
feature data including both time domain and frequency domain
characteristics. In the time domain, we consider maximum,
minimum, mean, and standard deviation as key features. In the
frequency domain, we derive features from a spectral graph
solved through fast Fourier transform (FFT). Specifically, these
FFT-based features include mean value, standard deviation,
information entropy, energy content, skewness indicating
statistical data asymmetry direction and degree of distribution
skewness, and kurtosis representing peak sharpness in the
dataset.
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Fig. 8. Speed model structure. The input is acceleration and gyroscope
and output is the change of speed per second. The core of speed model
is LSTM.

We characterize the velocity model as follows:

1Spdt = model(Acct−1,t , Gyrot−1,t , InitSpdt ) (1)

where t = 1, 2, 3, . . . , n, Acct−1,t and Gyrot−1,t represent
the extracted accelerometer and gyroscope features from this
second, respectively. Moreover, InitSpdt denotes the initial
speed at time t , and 1Spdt represents the model’s output
indicating the change of walking speed during this second
compared to InitSpdt .

We derive InitSpdt through the following procedure:

InitSpdt =


GPS_Spdt , t ≥ 1, training
0.81, t = 1, inference
Spdt−1, t > 1, inference.

(2)

Notice that the method for obtaining InitSpdt differs
between training and inference. During training, we directly
utilize the GPS speed of t − 1 second as InitSpdt . However,
during inference, due to the absence of GNSS signal, we adopt
the median value (0.81 m/s) of average pedestrian speeds
for InitSpdt at t = 1. Because the speed estimation is
only performed after the detection of the drop-off point, the
pedestrian is already in the walking state, not static state.
We evaluated the average walking speed of the first 3 s of each
track in our dataset collected by 20 participants and finally
determined the value of 0.81 m/s. For subsequent seconds
(t > 1), we employ the estimated speed from the previous
second (Spdt−1) as InitSpdt .

The structure of the speed estimation model is illustrated in
Fig. 8, which comprises three main components: embedding
layer, representation layer, and regression layer. In the
embedding layer, we initially extract the mixed embeddings of
Acct−1,t and Gyrot−1,t using a two-layer fully connected (FC)
network. Subsequently, these embeddings are concatenated
with Acct−1,t and Gyrot−1,t , respectively, to further enhance
feature extraction. For the representation layer, we employ
LSTM due to its suitability for our learning task of
continuously estimating pedestrian speed from sequential IMU
data. The structure is designed with one stack layer and a
hidden layer dimension of 128. Finally, in the regression layer,
we utilize four FC layers where the input data consists of not
only the output from the representation layer but also InitSpdt .

Then we get Spdt by

Spdt = InitSpdt + 1Spd. (3)

In the model training process, the sequence length is
50 samples/s, and total training set contains over 15 h of data.

Fig. 9. Smartphones and corresponding coordinate system with
different postures. The coordinate system of smartphone is different
at different posture. The flat posture is the standard coordinate in this
article. (a) Flat. (b) Calling. (c) Bag.

We used SmoothL1Loss function and Adam optimizer, set the
epochs to 80, the initial learning rate to 0.001, and the learning
rate to decrease by 50% for every ten rounds of training.

V. PEDESTRIAN BEARING ESTIMATION

This section consists of three parts, smartphone posture
detection, bearing calculate, and trajectory refinement.

A. Posture Detection
At present, our method is designed for smartphones of

Android system. Android smartphones adopt a right-handed
coordinate system, as shown in Fig. 9(a). In real-life scenarios,
it is highly improbable for users to maintain the standard
flat posture of the device [Fig. 9(a)], but rather they are
more likely to engage in activities such as making phone
calls while holding the device [Fig. 9(c)] or placing it into a
bag [Fig. 9(c)]. Consequently, when the smartphone assumes
different positions, the user’s walking motion exhibits distinct
variations along the three axes of the IMU. For instance, with
the flat posture of smartphone, the user’s forward acceleration
is predominantly manifested along the Y -axis of the phone.
Conversely, when the device is held for calling purposes,
it is expressed on both the X - and Y -axis. This variation
in feature expression can impact the efficacy of subsequent
models introduced in this article. Therefore, a real-time posture
detection module becomes imperative to ascertain the current
orientation of the smartphone and accordingly match it with an
appropriate training model for that specific posture. Currently,
our method supports three smartphone postures, flat, calling,
and cross bag positions as they are frequently encountered in
daily life.

We take acc, gvt, and gyro data within a period of time
window as the original input, extracted their time-domain
features, including max/min/mean/median/std, and input them
into the model. The window size can fluctuate within 1–5 s.
The larger the window, the better the effect. The posture
detection module is implemented using SVM and sklearn
framework on Python. The parameters are set as follows:
C = 0.4, kernel = “linear,” decision_function_shape = “ovr.”
On the mobile side, we use the smile library to implement.
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B. Bearing Calculation
Due to the existence of different postures of smartphone,

we need to transform the gyroscope data from arbitrary posture
ordinate to flat posture ordinate. First, the Z -axis in the
standard coordinate system Zflat is calculated by

Zflat = −
gvt

∥gvt∥2
(4)

where gvt is the sum vector of the triaxial gravity

gvt = (gvtx , gvty, gvtz). (5)

Second, the positive direction of Y -axis in the standard
coordinate system Yflat, is calculated by

Yflat =
accpdstr

∥accpdstr∥2
(6)

where accpdstr is the forward acceleration of the pedestrian.
It is calculated by

accpdstr = (accx − gvtx , accy − gvty, accz − gvtz) (7)

where accx , accy , accz is the triaxial acceleration. When we
have the Y - and Z -axes, we cross the two axes to get the
X -axis Xflat

Xflat = Yflat × Zflat. (8)

Then, the standard coordinate system is established. After
that, the gyroscope data are projected into the standard
coordinate system as follows:

gyroflat =

 Xflat
Yflat
Zflat

 ·

 gyrox
gyroy
gyroz

 (9)

where gyroflat is the gyroscope in the standard coordinate,
and gyrox , gyroy , gyroz is the triaxial gyroscope of arbitrary
posture. Finally, the projected gyroscope data is integrated to
obtain the bearing changes.

C. Trajectory Refinement
As mentioned above, we obtain the speed of pedestrian from

speed estimation model and obtain the bearing from bearing
estimation, so that we can obtain the trajectory of pedestrian.
But, there is still large drift error of the bearing we have
obtained. Therefore, we add a postprocessing for refinement.

In this article, it is assumed that the user only goes straight
and turns right angles. Then, in the straight segment, the
bearing of the user should be the same, but in fact, it is always
found that the bearing of the straight segment also changes as
shown in Fig. 10 where brngi0 is the unit bearing of Segi .
The reason is that since the built-in IMUs of smartphone are
generally cheap, the collected data itself have a large error,
which leads to a certain drift error between the calculated
bearing and the groundtruth. Fortunately, the gyroscope drift
amount is relatively constant in each posture and can be
corrected as a whole. Based on this premise, the turning
detection model is adopted to cut the straight sections of the
trajectory by detected turnings, so as to correct the drift of
the straight section. Since the feature expression of gyro data
under different posture of smartphone is obviously different,

Fig. 10. Bearing drift of straight trajectory segment. Even if the
pedestrian is walking in a straight line, the bearing will gradually deviate
from the original direction.

Fig. 11. Drift correction example. By using drift correction, the trajectory
is closer to the groundtruth than the raw trajectory.

the model is trained first through the multiposture dataset
collected outdoors. Each posture trains an independent turning
detection model, which is essentially a classifier for classifying
the current sample as turning or straight section. We used
SVM to implement the model with decision_function_shape =

“ovr.” The input is gyroscope data within a period of time after
noise reduction and smoothing. The window size is currently
set to 3 s and the step size to 1. In practice, the current
posture of the smartphone is obtained through the above-
mentioned posture detection module, and the corresponding
turning detection model is invoked for inference. In addition,
in order to prevent errors caused by multiple detection of a
single turn, all turns detected within 5 s are regarded as the
same turn.

After obtaining the turn detection result of the trajectory,
the trajectory is segmented according to turning points, and
the trajectory between every two turning points is regarded as
a segment. Thus, we obtain Segi , i = 1, 2, . . . , n. Therefore,
the bearing changes of each Segi will be counted as follows:

1brngi =

m∑
j=0

(brngi j − brngi0) (10)

where 1brngi means total bearing change of Segi , m means
that there are m trajectory points in this segment (1 point per
second), and brngi0 is the init bearing of Segi . Then, the mean
value of 1brngi will be calculated as the drift amount of the
current Segi , which will be used for correction

correct_brng j = brngi j − 1brngi ÷ m, j = 0, 1, . . . , m.

(11)

As shown in Fig. 11, the trajectory after drift correction has
lower error.

VI. PEDESTRIAN TRACKING

When the user is returning to car, we need to locate the user
in real time, so as to better guide the user. We use a particle
filter to estimate the pedestrian location. First, IMU data are
input into the trajectory calculation part to obtain the current
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speed and bearing of the pedestrian. Meanwhile, the planned
path created as shown in Fig. 6 is used as the constraint of the
particle filter to calibrate the pedestrian position in real time,
which can effectively reduce the uncertainty of the pedestrian
trajectory.

We represent the pedestrian position state as a probability
distribution and use particle filter to update the pedestrian
status. At time t , the pedestrian’s state (position and heading)
is expressed as s(t) using multidimensional random variables,
and each group of possible state values is defined as a particle.
J particle set {s( j)

t }
J
j=1 is used to represent possible distribution

state of pedestrians of time t . In this framework, the algorithm
follows the discrete time {1, . . . , t − 1, t, . . .} running and
repeating the following three steps at each time. Without loss
of generality, we assume that we have obtained J particles at
time t − 1 as {s( j)

t−1}
J
j=1.

The status update module according to the known inputs
{s( j)

t−1}
J
j=1, the speed and bearing as the latest motion m t , and

forecast t moment condition {ŝ( j)
t }

J
j=1. In order to capture

the uncertainty of the motion and previous state, we add the
random noise into the tracking module.

The weight updating module determines whether the
particle is in the road, and then adjusts the weight of the
particle {w

( j)
t }

J
j=1. If the particle is judged to be outside the

road, multiply the weight of the particle by a minimum value
1e − 8. If the particle is still in the road, we do not modify its
weight. After filtering out the particles of too small weight,
the weight of the remaining particles is normalized to ensure
that

J∑
j=1

w
( j)
t = 1. (12)

When the number of available particles is too small, the
resampling module reselects and adds particles according
to the weight distribution {w

( j)
t }

J
j=1 of the current state set

{ŝ( j)
t }

J
j=1, and then generates a new state set {s( j)

t }
J
j=1 to replace

the old state set {s( j)
t−1}

J
j=1. The above three steps will be repeat

during whole return navigation period. We set the max number
of particle to 500. Once the number of available particle lower
than 300, do resampling.

The pedestrian’s final position at time t is

positiont =

J∑
j=1

(
w

( j)
t × s( j)

t

)
. (13)

In addition, in the follower phase, not only the generated
planned road can give the user the overall direction guidance,
but also saved turn detection results of the trajectory
refinement part can offer the corresponding turn guidance to
the user.

VII. EVALUATION

A. Drop-Off Point Detection
We chose an underground parking lot of a railway station

in Hohhot, Inner Mongolia, China for the experiment.

TABLE I
DROP-OFF POINT DETECTION EXPERIENCE RESULT

TABLE II
TRAINING DATASET FOR SPEED MODEL

In the experiment, every time we drove into the parking
lot from outside, we parked in the Taxi pick-up and drop-
off area and got off the car to walk for a distance (>10 m).
The experiment was carried out 19×. Table I shows the
experimental results. It should be noted that due to the
sensitive detection algorithm, the main failure scenarios are
misidentification as walking and wrong step counting caused
by different driving habits or road conditions (such as unstable
driving and bumpy road surface) during driving.

B. Pedestrian Trajectory Estimation
Experiments of pedestrian trajectory estimation were

conducted on two datasets collected by ourselves: the
underground parking lot of a campus with an area of about
4660 m2, and the underground parking lot of a large shopping
mall with an area of about 24 600 m2. By default, the
experiment in this part adopts a single posture acquisition
for each trajectory, and there is no posture transformation in
the trajectory. The speed model in this experiment is trained
using the data collected outdoors. The detailed information is
shown in Table II. In total, we collected more than 20 h data
(including training set and test set), by using five Android
phones, since we have not yet found a large public dataset
suitable for this scenario. We collected the GPS data as
groundtruth outdoors to train the model. Indoors, we manually
measured the coordinates of each turning point relative to
the starting point. In the experiment, each participant in
the experiment will have another participant record his turn
time while walking, and then calculate the error between
the pedestrian coordinates estimated by the model and that
measured manually.

The map and track route of the campus underground parking
lot are shown in Fig. 12(a). The length of a single track is
about 123 m, including two turnings. And the map and track
route of the shopping mall underground parking lot are shown
in Fig. 12(b). We designed two routes, the first from A to C,
about 140 m, including two turnings, the second from B to
C, about 160 m, including three turnings. Table III lists the
dataset details.

We respectively compared the trajectory estimation results
on the three postures. In order to demonstrate the necessity
of trajectory refinement algorithm, we compare the result
of with and without trajectory refinement. Fig. 13 shows
the example of the tracking result on different postures.
Our method projects the gyroscope data and then makes
integral, finally does the trajectory refinement base on turning
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Fig. 12. Map and test paths of the campus and large shopping mall
underground parking lot. In campus underground parking lot, we design
a route with two turnings. And in large shopping mall underground
parking lot, we design a route with two turnings, and another route with
three turnings. (a) Campus. (b) Shopping mall.

TABLE III
TEST DATASET FOR PEDESTRIAN TRAJECTORY ESTIMATION

detection. On the three postures, the refinement algorithm
has significantly optimized the trajectory. Fig. 14 shows the
detailed error value per hundred meters in campus parking
lot, and Fig. 15 shows the detailed error value per hundred
meters in shopping mall parking lot.

Fig. 16 shows the final point error of the trajectory of the
proposed method in different postures. It can be seen that the
result under flat posture is the best. In calling and bag posture,
due to the drift error brought by the posture, the result has
decreased to a certain extent, but the maximum error is not
more than 10 m.

C. Comparison of Baseline Tracking Methods
In order to verify the applicability and superiority of

the pedestrian trajectory estimation method proposed for
the application scenario of this article, we compare our
method with other algorithms in related fields. Note that all
comparison experiments are performed on the dataset of the
hand-held flat posture.

First, the distance estimation results of the speed model
are compared with the traditional integral method and step
counting algorithm, and Fig. 17 shows the results. All the
data used in this experiment are outdoor, and the groundtruth
are GPS latitude and longitude. The test samples are a total
of 20 tracks of four users. It should be noted that, since the
purpose of this experiment is to compare the effect of speed
calculation algorithms, the GPS is used to provide the bearing,
rather than the bearing estimation method proposed in this
article. And in order to prevent the result of integration from
being too bad, we carry out denoising during data processing.
It can be seen that our method has better results. Although we
perform the denoising, the error of integration method is still
largest. Integration still produce a large cumulative error. And

the step counting algorithm uses fixed step size prior, which is
difficult to fit situation of every pedestrian, causing the error.

In addition, we also added the comparison of duration. Our
method takes an average of 0.0005 s to estimate the speed,
while the integration method takes 0.0003 s. Although the
integral method is faster, it has a large error. Our method takes
more time, but it is still sufficient for use.

Second, the bearing estimation method with drift error
correction in this article is compared with the pure gyro
integral method, the method solely using geomagnetic field,
and Muse which is the multisource fusion method. Since the
purpose of this experiment is to compare the effect of bearing
estimation method, the groundtruth of speed from GPS is
used in the experiment, instead of the estimated speed by the
method proposed in this article. As Fig. 18 shown, the method
of pure gyroscope integration has the largest error due to the
large angle offset generated by gyroscope drift. The MUSE
algorithm introduced geomagnetic correction to the bearing,
which was better than the pure gyroscope integration method.
The geomagnetic method has higher accuracy, but there are
usually complex magnetic fields in the indoor environment,
which will have a great impact on the bearing estimation. The
errors of the SVM-based drift correction algorithm proposed
in this article is smaller than others.

In addition, we also compared the overall pedestrian
tracking method in this article with RoNIN method, and the
results are shown in Fig. 19. RoNIN algorithm has a large
error in comparison, mainly because it requires Tango phone
to collect groundtruth, accurate data calibration, and 200 Hz
sampling frequency, which cannot be achieved in the target
usage scenario in this article. The purpose of this article
is to develop a car finding algorithm that can be used by
the general public only with ordinary smartphone. In order
to meet the usage scenario of this article, we reduce the
frequency of the dataset provided by RoNIN author to 50 Hz,
then the network is trained, and the data collected in this
article (without accurate data calibration) is input into the
network for trajectory estimation, and the final result is
obtained. Therefore, the effect of RoNIN algorithm is much
worse.

D. Long-Distance Tracking
In order to verify the effect of the algorithm in the long-

distance scene, we further collect the long-distance data in
the outdoor scene for the experiment. A total of 18 tracks
are used, including three users. Fig. 20 shows the change
of 100-m error of the proposed method with the change of
trajectory length at different postures. It can be seen that
the error per 100 m increases significantly as the length of
the track increases. When the trajectory length increases to
500 m, even in flat posture, 95% error reaches 34.45 m, and
the algorithm is basically unavailable. This indicates that the
algorithm proposed is more effective on short distance tracking
(≤200 m), but has limited effect on long distance tracking.
This is also an optimization method for our future. However,
the distance of 200 m can basically cover most of the parking
scenes of underground parking lots in daily life.
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Fig. 13. Example of pedestrian tracking result with or without trajectory refinement in campus underground parking lot. Our method that first
integrates the gyroscope and then corrects the drift has the better result. (a) Flat. (b) Calling. (c) Bag.

Fig. 14. Mean tracking error per 100 m in campus parking lot. After
refinement, the error has reduced significantly on each posture.

Fig. 15. Mean tracking error per 100 m in shopping mall parking lot.
After refinement, the error has reduced significantly on each posture.

Fig. 16. Error of final point of trajectory in the campus and shopping
mall underground parking lot with different postures. The result of flat
posture is the best, and the result of bag posture is the worst because
there is large drift in bag. (a) Campus. (b) Shopping mall.

Fig. 17. Comparison of distance estimation result between our method
and others. Our method has less error, because the integration method
will produce a large cumulative error and the step counting algorithm
uses fixed step size prior, which is difficult to fit situation of every
pedestrian.

E. Return Navigation
We also carried out return navigation experiment on the

above two datasets of campus parking lot and underground
parking lot of large shopping malls.

Fig. 21 shows the comparison between the user trajectory
obtained solely by using trajectory estimation method and the

Fig. 18. Comparison of bearing estimation result between our method
and other methods. Our method has less error because our method
correct the drift error of trajectory after gyroscope integral.

Fig. 19. Comparison of trajectory estimation result between our method
and RoNIN. Our method has less error because RoNIN require strict
calibration which is not supported in our scenes.

effect after adding particle filter on the campus parking lot
dataset. It can be seen that the particle filter method has better
effect on each posture.

Fig. 22 shows the final point error of the proposed method
in different posture. Fig. 22(a) is the result of the dataset in
campus parking lot and Fig. 22(b) is the result of the dataset in
shopping mall underground parking lot. It can be seen that the
result under flat posture is the best. In calling and bag posture,
due to the drift error brought by the posture, the effect has a
certain decline. However, no matter in the small-scale scene or
the large-scale parking lot, the maximum error of each posture
is less than 11 m.

In the application scenario, it is likely that the user has
different postures leaving and back to the drop-off point. For
example, the user makes a phone call when he leaving from
the car and put the phone flat in his hand when he returns
because he need to check the navigation from smartphone.
Therefore, we conduct experiment on scenarios with different
back-and-forth postures.

In this experiment, we assume that when the user leaves
from drop-off point, the smartphone may be in any of the poses
flat, calling and in the pocket, while when the user returns,
the smartphone is flat in the hand, because in our application
scenario, the user mostly needs to check the navigation on
the smartphone. Table IV shows the results of the experiment
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Fig. 20. Tracking error of long distance data in different postures. Our method on trajectories less than 200 m has the low error. But for trajectories
longer than 200 m, the error is rapidly increase. (a) Flat. (b) Calling. (c) Bag.

Fig. 21. Example of return navigation result with and without particle filter. With the particle filter the estimated trajectory is within the planned road.
(a) Flat. (b) Calling. (c) Bag.

Fig. 22. Result of return navigation error in different postures. The result
of flat posture is the best. But even for the worst result, the error is less
than 12 m. (a) Campus. (b) Mall.

TABLE IV
COMPARISON OF PEDESTRIAN TRACKING RESULT ON DATASET IN

SHOPPING MALL AND LONG TRAJECTORY

on dataset in shopping mall and dataset of long trajectory
(≥500 m). From the table, we can see that when the walking
distance becomes longer, the error will obviously increase,
which indicates that our method is not suitable for long
distance walking now.

F. Personalized Training
During the study, we found that the same trained model

had different effects when used by different users on different
smartphones, which indicated that if we fine-tune the general
model for each different user using their own trajectories, the

Fig. 23. Comparison between with and without personalized training.
After personalized training, the error of speed estimation greatly
reduced.

effect would be improved. Therefore, we do the corresponding
personalized training experiment.

In this experiment, users were assigned to use the
same smartphone for consecutive days to collect outdoor
trajectories. At least three trajectories were collected every
day by each user, and the collection time of each trajectory
was not less than 3 min, and additional data were collected
for testing on the final day. The posture of all of smartphones
were flat. Fig. 23 shows the evaluation result, and the effect
is compared with that of the general model. As figure shows
the effect of the personalized model is significantly better than
the general model. The mean value of speed error per second
for fine-tune is 0.08 m/s, 70% better than the general model
and the cdf 95% value of speed error per second for fine-
tune is 0.21 m/s, 58% better than the general model. It means
that for the general model, it is meaningful to fine-tune the
personalized model for each user.

We also performed personalized experiments on the long
distance trajectories, and Fig. 24 shows the results of the
general model and the fine-tuning model on nine different long
distance trajectories. The ordinate of the figure is the value of
the difference between the distance errors of the final points
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Fig. 24. Comparison between with and without personalized training
on long distance trajectories. For nine trajectories, the error of the
personalized training model is greater than that of the general model
in only one trajectory.

obtained by the two models. Errgeneral is the distance errors of
the final points obtained by the general model, and Errpersonal is
the distance errors of the final points obtained by the fine-tune
model. Except on the seventh trajectory, the distance error of
final point with general model is lower than that of personal
training model, and on the remaining eight trajectories, the
error of personal model is smaller. Especially at trajectory No.
5, Errpersonal is lower than Errgeneral nearly 8 m.

In addition, in actual use, we download the general model
from the cloud, and then personalized training will be carried
out on the user’s local device, rather than uploading the user’s
data to the cloud, which well protects the user’s privacy.

What’s more, our model is designed to be very lightweight.
We use DL4J framework to implement the locally trainable
deep model, and do the model compression and pruning.
So that the training task will not make too much burden.

VIII. CONCLUSION

In this article, we propose a navigation algorithm for car
finding in underground parking lots. This algorithm is capable
of automatically identifying disembarkation behavior, tracking,
and recording the user’s walking trajectory from the drop-off
point, and providing navigation services upon the user’s return
to the parking lot. Our method relies solely on smartphones,
utilizing IMU and GPS data collected outdoors for training
purposes. Moreover, it only requires IMU data for inference
indoors without any additional equipment or map support.

However, there are several shortcomings in our work. First,
our algorithm currently assumes that users enter and exit
through the same entrance, which means if users enter and
exit through different entrances, it is likely that they will
not be able to return to the correct exit position. Second,
the natural arm swing posture will cause a significant drift
errors of the IMU readings and make it unusable. At present,
we have not found a good noise reduction method, so that our
method cannot be applied on this posture currently. Third, our
proposed method has large error when applied to long-distance
trajectories. How to address these challenges will be a focus
of our future work.
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