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Abstract—Although location awareness is prevalent outdoors
due to GNSS systems and devices, pedestrians are back into
darkness in indoor buildings such as underground parking lots.
Frequently we forget where we park the car and get confused
by such maze-like structure. In order to track pedestrians
without any additional equipment and map support, we propose
PeTrack which is a smartphone-only approach that collects the
inertial measurement unit (IMU) data for long-term tracking.
Our intuition is to train the tracking model with crowdsourced
outdoor trajectories, and infer customized user’s trace with only
inertial readings at indoors. Specially, we propose an inertial
sequence learning framework with outdoor geo-tags. We also
exploit opportunistic landmark detection and structure cues
to refine the trajectory. We have developed a prototype and
conducted experiments in an underground parking lot, and
results have shown our effectiveness.

Index Terms—Inertial tracking, indoor localization, mobile
crowdsensing

I. INTRODUCTION

Thanks to the mature deployment of Global Navigation
Satellite System (GNSS) such as GPS and BeiDou, people can
easily acquire their locations at anytime outdoors, and such
location awareness enables convenient navigation services
in daily travelling. However, when we enter GNSS denied
environments such as underground or multi-storey parking
lots, satellite signals are difficult to penetrate, and location-
based services may go unavailable. Therefore, pedestrians
tracking without satellites to locate them and help them find
the car parked when they return to the parking lot is essential.
Fortunately, smartphone can capture the user’s various data
through multiple sensors (e.g., IMU, WIFI, Bluetooth, etc.). It
is promising to achieve real-time location and navigation via
extracting, fusing and learning of kinds of sensory readings.

In previous work, a straight forward method is to use
Kalman filter [1], [2]. However, it causes unbounded tracking
errors due to the accumulation by double integration. Another
mainstream method is step counting [3]–[5], but it largely
relies on a pre-defined stride length and holding posture,
and accumulated errors also exist over long duration. Some
other approaches [6], [7] fuse IMU and magnetometer for
robustness, but the geomagnetic signals are always severely
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interfered by electromagnetic objects in underground parking
lots. Furthermore, there are already several IMU datasets (e.g.,
RIDI [8], IoNet [9], RoNIN [10]) for indoor scenes, but most
of them rely on accurate calibration and require additional
equipment for ground truth collection, which is difficult for
deployment on large scale.

In this paper, we propose PeTrack which is a smartphone-
only pedestrian tracking approach in multi-level or under-
ground parking lots. It can continuously track and record the
pedestrian’s walking trajectory from the drop-off point, so as
to help them quickly find their car when they return to the
parking lot.

However, such an inertial and phone-only solution entails
a series of non-trivial challenges. First, it is difficult to rep-
resent pedestrian displacement through various mobile phone
postures (e.g., hand-hold, pocket, calling). Second, IMU data is
noisy, requiring robust modeling to decode the motion. Finally,
long-term tracking will lead to the accumulation of errors.
Therefore, the main contributions of this paper are as follows:

• We propose a data processing method based on the theory
of rigid rotation, so as to transform smartphone’s inertial
data under arbitrary postures to the flat posture that is
consistent with the pedestrian.

• We explore an inertial sequence learning framework that
can predict the walking speed of pedestrians, via the
Recurrent Neural Network(RNN) as the core algorithm
and smartphone’s IMU readings as the only input. We
only need geo-tags to train the model, and infer indoor
trajectories without any satellites or maps.

• We propose a trajectory refinement method by line-fitting,
so as to eliminate the inertial drifts and accumulated
errors. We also identify opportunistic landmark to further
calibrate pedestrian’s real-time location.

II. RELATED WORK

Traditional Tracking Methods. The simplest and original
method is to first use Kalman filter [1] to filter IMU data,
and then integrate the processed acceleration to get the speed.
After that, the displacement of pedestrians can be obtained [2].
However, this method will lead to amplification of data errors
after twice integration, thus reducing the final effect. Another
popular method is using the step detection [3]–[5] to get the
walking distance of pedestrians. To get the walking direction
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of pedestrians, You et al. [11] propose a hybrid method based
on IMU and RSSI for pedestrian’s dead reckoning. Tong et
al. [12] use principal component analysis [13] to infer the
direction of walking. However, compared with the vehicle
always driving along the fixed lane, the walking pattern of the
pedestrian is more uncertain, so the robustness of this method
is poor.

Data-driven Prior Tracking Methods. RIDI is the first
data-driven inertial navigation method [8], which focuses
on correctly expressing the velocity vector in the device
coordinate system while relying on multi-sensor fusion to
estimate the heading. IONet [9] is a neural network-based
method that regresses the velocity and the change rate of
motion direction without relying on the direction information
of external devices. They also provide a special dataset, which
is collected in a specific room with Vicon equipment installed
in advance. RoNIN [10] provides a large IMU dataset, which
allows users to use mobile phones during the data collecting,
and even sit down. However, its sampling frequency is as
high as 200Hz, and the truth value needs to be collected
by Google’s Tango phone [14], which has been accurately
calibrated and error compensated. The above methods require
accurate calibration and additional equipment deployment to
collect ground truth, so they are not suitable for large-scale
deployment.

III. DESIGN OVERVIEW

In order to track pedestrians at indoors, our intuition is to
exploit outdoor trajectories with geo-tags to train the tracking
model, and then apply it to infer indoor trajectories in real
time.

The architecture of our PeTrack is shown in Fig. 1. It uses
inertial measurements as the only input, and geo-tags as the
groundtruth for training. Specially, PeTrack consists of three
steps.

Step 1: Data processing. In order to synchronize smart-
phone’s inertial readings and its geo-tags by GPS, we identify
all turns during walking and calculate the average time dif-
ference between the two sensing modalities. After that, we
used the game rotation vector to convert the inertial data
from arbitrary posture to flat posture, whose coordinate system
is consistent as the pedestrian. Finally, we devise a one-
dimensional convolution operation for denoising.

Step 2: inertial sequence learning. We explore an LSTM
[15] based model to learn the current walking speed directly
from the inertial readings, rather than directly performing
continuous integration or step counting. At indoors, we use the
trained model to infer the pedestrian’s walking speed without
geo-tags.

Step 3: Trajectory refinement. We propose a line-fitting
algorithm which corrects the orientation drifts for heading esti-
mation during walking. We also identify multiple opportunistic
landmarks such as the elevator, stairs, and entrances, so as to
calibrate pedestrian’s realtime locations in the parking lot.

Fig. 1. Design overview.

IV. METHODOLOGY

A. Data Processing

Data synchronization. In the outdoor scenario, the GPS
data is collected as the groundtruth. However, through obser-
vation, we find that there is always a 0-5s delay in GPS for
the heading change of pedestrians, that is, when gyroscope
has sensed the bearing change of pedestrians, GPS data may
reflect the change after 5s at the latest. Therefore, IMU data
needs to be aligned with GPS data.

Multi-pose transformation. We stipulate that under ideal
conditions, when data is collected, the posture of smartphone
should be completely flat, that is, the positive direction of
mobile phone’s Y axis is parallel to the horizontal plane and
points to the forward direction of pedestrian. However, in the
real world, the posture of the smartphone can be varied. For
example, the user may talk on the phone while walking, or put
the phone in his pocket. Therefore, it is necessary to rotate the
collected inertial measurement unit (IMU) data from arbitrary
posture to flat posture.

We use the game rotation vector to implement this process.
As shown in Fig. 2, first of all, when the sensor is registered,
the initial coordinate system of the mobile phone will be
determined, and the IMU data in this coordinate system is
set as d0. Set the value of game rotation vector at flat posture
as r1 and IMU as d1. Set the value of game rotation vector
at any attitude as r2 and the IMU data as d2. We can obtain
1 from the rotation formula of quaternions.

r−1
1 × r2 × d2 × r−1

2 × r1 = d1 (1)

During the calibration process before the formal start of
each track, we will let the pedestrian hold the hand-held flat
posture for a period of time, so that r1 is known, and the real-
time r2 and d2 can be obtained when the pedestrian changes
to any posture. Therefore, the IMU data can be rotated from
arbitrary posture to flat posture by using 1.

Data smoothing. Since the current inertial sensors on smart
phones do not have high precision, there is a large noise in
the collected data. We use one-dimensional convolution to
smooth and denoise the data. As shown in the Fig. 3, the
outliers (values that are too large) are significantly smaller
after smoothing, which is more conducive to model training.
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Fig. 2. Multi-pose transformation. Fig. 3. Effect of data smoothing.

Fig. 4. Data flow of speed estimation.

B. Inertial Tracking Model Overview

We design a supervised deep learning model (Speed DNN
Model) and decoupled the pedestrian speed estimation func-
tion from bearing estimation. The data flow of the speed
estimation model is shown in Fig. 4. The whole workflow
is divided into two lines: model training and model inference.
In model training, we use inertial data collected outdoors to
construct the training dataset with the speed provided by high-
quality GNSS as the groundtruth. For inertial data processing,
we design a feature extraction module to extract the feature
of the accelerometer and gyroscope, including time domain
feature and frequency domain feature.

C. Network Structure

The structure of speed estimation model is shwon in Fig. 5.
The model is generally divided into three parts, among which
the first part is embedding layer, the middle part is represen-
tation layer, and the last is regression layer.

Embedding layer. The embedded layer takes the features of
accelerometer (ACC) and gyroscope (GYR) as input to realize
the re-extraction and effective fusion of such inertial features.
We first adopted a two-layer fully connected network to extract
the fusion features of accelerometer and gyroscope. Then, a
symmetric two-layer fully connected network is adopted, and
the extracted feature information is fused with the accelerom-
eter feature and gyroscope feature respectively.

The representation layer. For the design of the representa-
tion layer, we directly choose LSTM, a representative member
of the recurrent neural network. The structure is designed with
stack layer number of 1 and hidden layer dimension of 128.

The regression layer. The regression layer takes the output
of the representation layer and the initial walking speed of
pedestrians (Spdstart) as input, and designs a fully connected
network with a depth of 4 layers. The output is the change of
walking speed in this period of time (one second) compared
to the initial speed.

Fig. 5. Network structure of speed estimation model.

The way of obtaining Spdstart is different in model training
and model inference. As the training set of the model adopts
outdoor data with GNSS information, the pedestrian speed
provided by GNSS is directly adopted in the training Spdstart.
However, GNSS cannot work when model reasoning is applied
in indoor places. In order to fill the vacancy of Spdstart,
the median of the average pedestrian speed in the first three
seconds of each track in the data set (0.81m/s) is adopted as
the default value of Spdstart.

Hyper-parameter. In the model training process, we use
SmoothL1Loss function and Adam optimizer. The epochs are
80 and the initial learning rate is 0.001, decreasing by 50%
every 10 rounds of training.

D. Trajectory Refinement

Heading Estimation. In order to estimation of the user’s
walking path, it is not enough to have the speed feature alone,
but also need to obtain the user’s heading information, PeTrack
only uses the data from the accelerometer and gyroscope to
estimate the bearing. We first integrate gyro data directly,
because after rotation in data processing, the IMU data have
been rotated to the ideal posture, so the z axis gyroscope data
can be integrated directly without any further processing. Next,
we combine the integration results with velocity estimation
results to obtain the user’s trajectory coordinates, and then
use line-fitting algorithm to correct the trajectory coordinates.

Line-fitting algorithm. As we all know, the change in
heading is more pronounced at the corner than in a straight
line. We assume that the turning angles are all 90 degrees.
When turning, the bearing changes gradually, so we consider
the position where the bearing changes more than 45 degrees
in 3s as the corner. We segment the trajectory according to the
bearing, and use the least square method to fit the segmented
trajectory.The bearing difference between the segmented tra-
jectories is calculated according to the slope of the fitted
line, and then the required correction angle is calculated by
making the difference with 90 degrees. Finally, to obtain the
new coordinate of the trajectory point, we rotate the trajectory
around the starting point of the trajectory.

E. Landmark Detection

Landmark detection is mainly divided into two parts, stair
and elevator detection, and opportunistic WiFi-based detection.

Stairs and Elevator Detection. As Fig. 6(a) shown, usually
when pedestrian climbs stairs, the acceleration will change
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(a) Stair detection (b) Elevator detection

Fig. 6. Acceleration features of stairs and elevators.

TABLE I
TRAJECTORY DATASET DETAILS

Scenarios Trajectories Duration Frequency Posture

outdoor
125

3-5min 50hz
flat

74 calling
74 pocket

indoor
50

2-5min 50hz
flat

24 calling
24 pocket

regularly. And as Fig. 6(b) shown, when the pedestrian is in the
running elevator, the acceleration data also has obvious feature,
so that we can use this feature to detect them. Specifically,
we achieve a feature matching method by calculating the
amplitude of acceleration and gait detection.

Opportunistic Wifi-based landmark detection. Although
there are abundant WiFi signals in major shopping malls
and office buildings, signals in underground parking lots are
always weak or absent. However, sometimes there may be a
relatively strong signal at the entrances of a parking lot, which
are landmarks in this paper. Therefore, an opportunistic Wifi-
based landmark detection can be conducted. In the matching
algorithm, the Euclidean distance between the sample and the
ground truth of the fingerprint database is calculated. When
the Euclidean distance obtained is less than a certain threshold,
the user can be judged to be at the landmark.

V. EVALUATION

A. Methodology

In order to evaluate the effect of the PeTrack, we collect
data in both outdoor and indoor scenarios. The dataset details
are listed in Table I. In order to simulate various postures
of the mobile phone, we design three poses as shown in the
Fig7: holding flat, making a phone call, and placing the mobile
phone in the pants pocket. Data is collected for each posture
indoors and outdoors respectively.

In the implementation, we use PyTorch to train our model
on the machine learning platform with one GeForce GTX 2080
Ti GPU, an Intel i7 CPU, and 32G RAM.

B. Evaluation of Trajectory Tracking

Accuracy. We compare the PeTrack and classical step
counting algorithm with direct gyroscope integration to obtain
the heading. As shown in Fig. 8, the CDF curve represents the
final point distance error of 50 flat posture tracks. The error

(a) Flat (b) Calling (c) Pocket

Fig. 7. Schematic diagram of smartphones with different postures.

Fig. 8. Localization errors. Fig. 9. Influences of three postures.

of PeTrack is less than 10m in 80% of cases, while the error
of step counting is more than 15m.

Various posture. We also compare the performance of
PeTrack on different posture, as shown in the Fig. 9. It can
be seen that the performance of the flat posture is obviously
better than the others. Especially, the pocket posture error is
very large, which is mainly because when the mobile phone is
placed in the pants pocket, pedestrians will regularly lift and
lower their legs at every step when walking, which leads to a
huge error in IMU data.

Training set size. We compare the effects of different
training sets on model stability. Ninety walking tracks of
flat posture (the walking duration of a single track is 3-5
minutes) are regarded as ”1” as a whole, and five grades are
set according to percentage: 10%, 20%, 50%, 80% and 100%.
The corresponding number of tracks are 9, 18, 45, 72 and 90
in sequence. The results are shown in Fig. 10(a), in which it
can be found that when only 9 track data are used for training,
the median error of the speed model is close to 20m. When
the order of magnitude is gradually increased, the error range
and median of the velocity model tend to be stable gradually,
and the model achieves the best effect when 72 track data are
used for training. Moreover, to make a fairer comparison, we
introduced Mean Absolute Pencentage Error (MAPE), and the
evaluation results are shown in Fig. 10(b). It can be found that
MAPE gradually decreases with the increase of magnitude,
which is consistent with the result in the figure above.

C. Landmark Detection Evaluation

Stair and elevator detection. We perform 2-minute walks
on the ground and stairs, and collect IMU data for different
postures during walking. For elevator detection, a total of
30 sets of data are collected, including elevator ascending
and elevator descending categories. As shown in Table II,
for all postures, the average accuracy of stair detection is
about 96.1%, and the accuracy of elevator detection is about
99.0%. Because the feature is very obvious, and not affected
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(a) (b)

Fig. 10. Error of speed model under different amount of training data.

TABLE II
STAIR/ELEVATOR DETECTION

Scenario Recall Accuracy
stair 100.0% 96.1%

elevator 100.0% 99.0%

TABLE III
WIFI-BASED DETECTION

Recall Accuracy Precision
89.8% 92.3% 87.8%

by the posture of the mobile phone, the detection difficulty is
relatively low and the result is relatively good.

Opportunistic WiFi-based detection. The test results are
shown in Table III. Because the WiFi signal in our ex-
perimental scenario is very weak, the recall rate is only
89.8%. Correspondingly, weak WiFi signals are occasionally
detected in non-landmark locations, so misidentification also
occurs, resulting in an precision rate of only 87.8%, as we
continuously detect signals throughout the pedestrian’s walk.
This further proves the low applicability of WiFi location in
indoor parking lots, and we only use it opportunistically as an
auxiliary means.

D. Trajectory Generation

We further conducted experiments on the generation of
pedestrian walking tracks. In the interior, a simple route and a
complex route are selected as examples. The result is shown
in Fig. 11. The simple route has a total length of about 120m
and contains two turns, while the complex route has a total
length of about 410m and contains 14 turning points. We
carefully measured the distance of the planned paths to the
starting point(the origin in Fig. 11), and plotted the groundtruth
trajectories. It can be seen that no matter it is a simple
trajectory or a complex trajectory containing multiple turns,
our method can restore the trajectory well. For the simple
trajectory, the final point position error is 6.14m, the heading
error is 2.98°, and the position error of the two turning points is
within 5m. For the complex trajectory, the final point position
error is 6.36m, the heading error is 14.12°, and the position
error of all turning points is also within 7m. Therefore, PeTrack
can provide relatively accurate indoor pedestrian tracking and
trajectory restoration.

VI. CONCLUSION

In this paper, we propose PeTrack, a smartphone-based
indoor pedestrian tracking method that solves the problem
without additional device deployment. The basic idea we
follow is to train the model with outdoor data and apply
the model to the indoor scene, so as to solve the problem
that the model cannot be trained in the indoor scene due
to the lack of groundtruth. By using PeTrack, even the data

(a) Simple route (b) Complex route

Fig. 11. Indoor trajectory generation.

for arbitrary phone posture can be converted to the flat pose
for use. However, for the case that the original data itself
has a large data drift, we cannot give a good tracking result
temporarily, which is the main focus of our future work.
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