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Glow in the Dark: Smartphone Inertial Odometry
for Vehicle Tracking in GPS Blocked Environments

Ruipeng Gao , Xuan Xiao , Shuli Zhu, Weiwei Xing , Chi Li, Lei Liu , Li Ma, and Hua Chai

Abstract—Although vehicle location-based services are preva-
lent outdoors, we are back into darkness in many GPS blocked
environments, such as tunnels, indoor parking garages, and
multilevel flyovers. Existing smartphone-based solutions usually
adopt inertial dead reckoning to infer the trajectory, but low-
quality inertial sensors in phones are plagued by heavy noises,
causing unbounded localization errors through double integra-
tions for movements. In this article, we propose VeTorch, a
smartphone inertial odometry that devises an inertial sequence
learning framework to track vehicles in real time when GPS
signal is not available. Specifically, we transform the inertial
dynamics from the phone to the vehicle regardless of the arbi-
trary phone’s placement in the car and explore a temporal
convolutional network to learn the vehicle’s moving dependen-
cies directly from the inertial data. To tackle the heterogeneous
smartphone properties and driving habits, we propose a federated
learning-based active model training mechanism to produce cus-
tomized models for individual smartphones, without incurring
user privacy issues. We implement a highly efficient proto-
type and conduct extensive experiments on two large-scale
real-world traffic data sets collected by a modern ride-hailing
platform. Our results outperform the state-of-the-art vehicu-
lar inertial dead-reckoning solutions on both accuracy and
efficiency.

Index Terms—Federated learning, inertial sequence learning,
location-based services, vehicle tracking.

I. INTRODUCTION

THANKS to the explosion of GPS systems and devices,
drivers can easily track their vehicles in most urban

areas. Such location information is pivotal to many vehicu-
lar location-based services, including route planning, vehicle
dispatching, and self-driving. However, whenever we drive

Manuscript received June 16, 2020; revised November 16, 2020 and January
23, 2021; accepted February 28, 2021. Date of publication March 8, 2021;
date of current version August 6, 2021. This work was supported in part
by NSFC under Grant 62072029, Grant 61872027, and Grant 61876018; in
part by the National Key Research and Development Program of China under
Grant 2018YFB1601000; in part by Beijing NSF under Grant L192004; in part
by the Open Research Fund of the State Key Laboratory of Integrated Services
Networks under Grant ISN21-16; in part by the DiDi Research Collaboration
Plan; and in part by the CCF-Tencent Open Fund. (Corresponding author:
Ruipeng Gao.)

Ruipeng Gao is with the School of Software Engineering, Beijing Jiaotong
University, Beijing 100044, China, and also with the State Key Laboratory
of Integrated Services Networks, Xidian University, Xi’an 710071, China
(e-mail: rpgao@bjtu.edu.cn).

Xuan Xiao, Shuli Zhu, and Weiwei Xing are with the School of Software
Engineering, Beijing Jiaotong University, Beijing 100044, China (e-mail:
xiaoxuan@bjtu.edu.cn; zhushuli@bjtu.edu.cn; wwxing@bjtu.edu.cn).

Chi Li, Lei Liu, Li Ma, and Hua Chai are with the Maps and
Public Transportation Department, DiDi Corporation, Beijing 100193,
China (e-mail: lichi@didiglobal.com; liuleifrey@didiglobal.com; mali-
marey@didiglobal.com; chaihua@didiglobal.com).

Digital Object Identifier 10.1109/JIOT.2021.3064342

into GPS blocked areas, such as tunnels, underground parking
garages, or multilevel flyovers, we lose the location aware-
ness. Not only do we have to endure the location “blindness,”
frequently we get confused on each road junction we drive
through.

Enabling vehicular tracking services in GPS blocked envi-
ronments will support many practical driving demands, includ-
ing generating the right senses of control and inducing calm-
ness psychologically, both significantly enhancing the driving
experience. For example, when driving from the Boston air-
port to the MIT Museum, there are four tunnels lasting for
2.7 miles with six inside road junctions along the path, and
drivers have to identify each correct road junction and take
immediate actions (e.g., lane shifting).

However, tracking vehicle without GPS signals is far from
straightforward. Although vehicles display instant speed val-
ues at the dashboard, we can hardly exploit such data
except deploying a dedicated onboard diagnostics (OBD)
device to car’s busline, which is not always suitable for the
crowd. Mainstream indoor localization technologies leverage
the radio frequency (RF) signals, such as Wi-Fi [1], [2] and
Bluetooth [3], which can hardly penetrate in many large-
scale enclosed environments, such as tunnels and garages.
Deploying sensor networks is always time consuming and cost
expensive. In addition, the lack of network infrastructure (e.g.,
cellular towers) also indicates no cloud service, thus both data
storage and computation occur locally at the device, which
impedes the application of deep learning methods [4], [5] for
inertial tracking in real time.

In this article, we propose VeTorch which only leverages the
smartphone’s inertial data to infer vehicle’s locations in real
time. It does not require any additional sensors and is scalable
for fast and customized deployment on individual smartphones
without incurring user privacy issues.

Such an inertial and phone-only approach entails a series
of nontrival challenges. First, the inertial data is collected via
smartphones, thus we need to carefully transform such dynam-
ics from the phone to the vehicle despite arbitrary phone’s
placements in the car. Second, low-quality inertial measure-
ment unit (IMU) sensors in commodity phones are plagued by
heavy noises, causing unbounded localization errors through
double integrations for movements. Finally, the heterogeneous
smartphone hardware properties and user driving habits make
it challenging to achieve optimal performance with a unified
model trained on an existing data set. Efficient training of
customized models without incurring privacy issues is critical
for practical use.
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Fig. 1. Diagram of a strapdown inertial navigation system. R is the
acceleration projection, and g denotes the gravity update.

Our solution consists of several components to deal with
the above challenges, aiming to infer accurate and real-time
vehicular locations regardless of GPS signals. Specifically, we
make the following contributions.

1) We effectively transform inertial dynamics from the
phone to the vehicle, thus eliminate impacts of phone’s
placement in car and reduce inertial noises.

2) We devise a TCN architecture to yield vehicle’s
movements directly from inertial sequences, instead of
continuous integrations. We further enhance the robust-
ness by fusing with auxiliary attributes, such as historical
trajectories, speed trend, and social information.

3) We explore a federated learning solution to produce
customized models for fast deployment on individual
smartphones, without the need of raw driving data
uploading, eliminating the privacy issues.

4) We develop a highly efficient prototype and conduct
extensive experiments on two large-scale real-world data
sets collected by a modern ride-hailing platform. Results
have shown our effectiveness compared with the state of
the art.

II. PRELIMINARY

When tracking vehicles in GPS blocked environments, cur-
rent ride-hailing platforms always build a strapdown inertial
navigation system as the odometry for vehicle dead reckoning
(Fig. 1). Especially, the odometry exploits smartphone’s iner-
tial data as inputs, i.e., the 3-axis accelerations by accelerome-
ter and the 3-axis angular rate by the gyroscope, both measured
at the phone’s coordinate system.

Intuitively, instead of directly double integrating accelera-
tions into distance (xt =

∫ ∫
atdtdt), they leverage vehicle’s

heading direction Ht (unit vector) and speed amplitude st to
infer the location: xt =

∫
Ht · stdt, where st is calculated as

st =
∫

atdt, integration of the acceleration amplitude along
vehicle’s heading direction. Although there are still two inte-
grations, the heading direction can be measured reliably by
gyroscope.

In practice, accelerations are always denoised by a first-
order low-pass filter. Since the phone’s coordinate system
is not aligned with the vehicle, estimating vehicle’s abso-
lute heading direction is not trivial. They have explored an
extended Kalman filter (EKF) solution [6] to track vehicle’s
attitude, i.e., q = [q1, q2, q3, q4]T in the quaternion expression.

Step 1)—Attitude Prediction: They use gyroscope readings
to predict the vehicle’s attitude in the next state

q̂t+1 =
⎡

⎣
ω
|ω| sin

( |ω|
2 �t

)

cos
( |ω|

2 �t
)

⎤

⎦⊗ qt (1)

Fig. 2. VeTorch consists of three steps: motion transformation from phones
to vehicles, inertial sequence learning to model vehicle’s movements, and
customized location inference for deployment on individual phones. We also
leverage auxiliary attributes as bonus features.

where ω denotes the current angular rate from gyroscope. They
also calculate the state covariance matrix Pt+1|t as

Pt+1|t = �Pt|t�T + Q (2)

where � is the state transition matrix, and Q is the noise
variance matrix.

Step 2)—Attitude Updating: They leverage accelerometer
readings to update the attitude prediction. First, the Kalman
gain K is computed as

K = Pt+1|tHT(
HPt+1|tHT + R

)−1
(3)

where H is the observation matrix from acceleration a, and R
is the measurement noise. They then update the corresponding
covariance matrix

Pt+1|t+1 = (I − KH)Pt+1|t(I − KH)T + KRKT (4)

where I presents the identity matrix. Finally, they update
vehicle’s attitude based on the Kalman gain

qt+1 = q̂t+1 + K
(
a− Hq̂t+1

)
. (5)

Given the attitude, smartphone’s accelerations are projected
to vehicle’s heading direction as its forwarding accelerations.
However, due to the low-quality inertial sensors in commodity
smartphones, large drifts and noises appear frequently and are
easily accumulated to extreme location errors.

III. DESIGN OVERVIEW

In this article, we propose VeTorch which utilizes only
smartphone’s inertial data to track vehicle’s location in GPS
block environments. Fig. 2 depicts our system architecture
which is composed of the training and inference process. First,
when vehicles are driven outdoors, we collect their GPS loca-
tions as the ground truth to train the tracking model, which
transforms inertial sequences to trajectories. Next, when vehi-
cles enter GPS blocked environments such as tunnels, they
exploit the pretrained smartphone-specific model to infer loca-
tions in real time. In a word, GPS readings are only used to
train the model, but not evolved in location inference.

VeTorch leverages a 3-step process to train the customized
tracking model. Step 1) motion transformation (Section IV),
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Fig. 3. Data transformation from the smartphone (Xp, Yp, Zp) to the vehicle
(Xv, Yv, Zv).

we use principal component analysis (PCA) and EKF to
transform phone’s inertial dynamics to the vehicle, regard-
less of arbitrary phone’s placement in car. Step 2) inertial
sequence learning (Section V), we explore a sequence-to-
sequence model to infer vehicle’s movements directly from
inertial observations, instead of conducting continuous inte-
grations. Step 3) customized model training (Section VI), we
devise a federated learning mechanism to train customized
models for individual smartphones with a fast, secure, and
active deployment.

Besides using basic inertial readings as inputs, VeTorch can
also leverage more auxiliary attributes (Section VII) as bonus
features to improve the tracking accuracy. For example, we
explore a bidirectional recurrent neural network to recover his-
torical trajectories in GPS blocked environments and produce
historical speed features at fine-grained areas. We also predict
future speed trend based on recent GPS trajectory before los-
ing the signal reception. Moreover, we further implement a
Web crawler to extract social attributes as additional features,
including the road map, weather condition, holiday index, and
the day in week information.

IV. MOTION TRANSFORMATION

The smartphone inertial data, i.e., 3-axis accelerations (ap
X ,

ap
Y , and ap

Z) and 3-axis angular rates (ωp
X , ω

p
Y , and ω

p
Z) in

Fig. 3, are measured in individual phone’s coordinate system,
thus they are not aligned within the same reference system due
to arbitrary placements of smartphones in car. In this section,
we transform such motion dynamics from the smartphone to
corresponding movements of the vehicle, which are further
learned via our TCN model.

In addition, since the inertial data is highly noisy and sus-
ceptible to various disturbances from vehicle’s vibration and
road conditions, we only produce the vehicle’s forwarding
acceleration av

Y and heading direction ωv
Z as inputs for location

inference, i.e., �v = f (av
Y , ωv

Z), where v represents vehicle’s
speed on the ground. This tracking model simplifies the spatial
tracking problem onto the 2-D horizontal plane, thus elimi-
nates impacts of inertial noises along the other two axes (i.e.,
av

X , av
Z , ωv

X , and ωv
Y ).

In order to transform accelerations from the smartphone to
the vehicle, we describe how to estimate the phone’s place-
ment in car, i.e., estimating vehicle’s axes (Xv, Yv, Zv) in the
phone’s coordinate system (Xp, Yp, Zp) (Fig. 3). First, when
the car is static, the gravity direction corresponds to the Zv-
axis. Second, we deduct accelerations onto the horizontal plane
and explore a PCA [7] algorithm to yield the forward direc-
tion Yv. The intuition is that vehicle’s accelerate/decelerate

Fig. 4. Distribution of normalized standard deviation during static and
moving states.

operations indicate its forward direction with the maximum
accelerations. Finally, the rest Xv is calculated as the cross
product of Zv and Yv. Below, we explain the algorithm in
detail.

Step 1 (Zv-Axis Estimation): The Zv-axis and the grav-
ity are on exact opposite directions when the vehicle is on
level ground. There are various techniques [8] to extract the
gravity components at reasonable accuracy (e.g., iOS has an
API to obtain the gravity vector). Since vehicle’s movements
will cause small and random disturbances, we use a low-pass
Butterworth filter for denoising and average the extracted grav-
ity samples within a time window. Given the Zv-axis, the
vehicle’s rotation for a turn on the xy-plane can be derived
reliably by the gyroscope, thus we can identify whether the
vehicle is moving along straight lines or making a turn.

Step 2 (Moving Detection): To estimate the vehicle’s for-
warding direction, we need to detect whether the vehicle is
moving. To this end, we calculate the variance of accelerations
on three axes averaged within a sliding window. In practice,
due to inevitable vibrations, small accelerations always exist
and form the variance, thus we consider the vehicle static if
the variance is smaller than a threshold. Fig. 4 shows the nor-
malized variance distribution during static and moving states.
We can see that the overlapping portion is small compared to
the total areas.

Step 3 (Yv-Axis Estimation): Theoretically, vehicle’s accel-
erations during straight driving are nonzero on the Yv-axis only
(assuming gravity is removed). In practice, there are some
noises on the Xv-axis due to inevitable vibrations. Suppose
that the direction of acceleration on the xy-plane is represented
by a unit vector (cos θ, sin θ) on the xy-plane of the vehicle.
Given a sequence of accelerations, we first project them onto
the xy-plane via the gravity direction. Denote the projected
results (xi, yi), i = 1, . . . , k. We cast the forward direction esti-
mation problem as a PCA approach by deriving the minimum
acceleration deviations along the true Yv-axis, i.e.,

min
θ

k∑

i=1

(xi cos θ + yi cos θ)2 = aF sin 2θ + b cos 2θ + c

=
√

a2 + b2 sin(2θ + γ )+ c

(6)

where a =∑k
i=1 xiyi, b =∑k

i=1([x
2
i − y2

i ]/2),
c =∑k

i=1([x
2
i + y2

i ]/2), and tan γ = (b/a). This equation has
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a closed-form solution

θ1 = 1

4
π − γ

2
, θ2 = 5

4
π − γ

2
. (7)

We observe that there are two optimal solutions to θ , repre-
senting the forward and backward directions of the vehicle,
denoted by θ1 and θ2. Next, we decide which is the correct
forward direction Yv.

Step 4 (Forward/Backward Estimation): First, we use θ1 to
compute the corresponding (Xv, Yv, Zv) axes in the phone’s
coordinate system, and project accelerations to the vehicle.
When the vehicle starts moving from static for a short time,
there should be more positive accelerations on its forward
direction. We use a sliding time window and calculate the
proportion of positive accelerations as

ρ = 1

k

k∑

i=1

y3
i . (8)

Note that we use the cubic form rather than a linear form
to better reduce small noises caused by the vibration of the
vehicle. Then, we put this value into a sigmoid function and
derive a probability of how likely θ1 matches θ

p(θ = θ1) = 1

1+ e−ρ
. (9)

V. INERTIAL SEQUENCE LEARNING

After the motion transformation, VeTorch takes a sequence
as the input and outputs a corresponding sequence at each
timestamp, e.g., directly transforming accelerations to the
velocity deviation. The goal of inertial sequence learning is
to find a network f : x1:t �→ y1:t such that minimizes the
differences between actual observations and corresponding
predictions.

A. Temporal Convolutional Network

Recurrent neural networks (RNNs) (e.g., LSTM [9] and
GRU [10]) have become the most popular architecture for
sequence modeling, while they are usually computation inten-
sive due to the large number of parameters, making them inef-
ficient on mobile devices. Instead, we choose the TCN [11],
which is also effective on certain tasks with long-range con-
texts, e.g., audio synthesis [12] and machine translation [13],
while is more suitable for deployment on smartphones.

There are two basic components in the TCN framework for
sequence learning, i.e., the causal convolutions and the dilated
convolutions. Below, we explain them in detail.

1) Causal Convolutions: In order to ensure no leakage from
the future into the past, TCN leverages causal convolutions
where the output at the current time is only convolved with
the elements from the current and earlier time. For 1-D inertial
sequence, the causal convolution operator is formalized as

CausalConv(xt) = xt ∗ F(k) =
k−1∑

i=0

xt−i · Fi (10)

where k denotes the kernel size, and Fi is the parameter matrix
of the convolutional filter.

Fig. 5. Causal dilated convolutions.

Fig. 6. Model architecture. Our network consists of four TCN stacks, one
slice layer, and one FC layer.

2) Dilated Convolutions: In order to derive an exponen-
tially large receptive field along the long history, TCN con-
ducts dilated convolutions on the 1-D vectors. Formally, when
combined with causal convolutions, the dilated convolution
operator is defined as

DilatedConv(xt) = xt ∗ D(k, d) =
k−1∑

i=0

xt−i·d · Di (11)

where k is the filter size, d is the dilation factor, and D(k, d)

denotes the convolutional filter. We summate k multiplied
results from current time t to t− (k− 1) · d, thus significantly
increases the receptive field (Fig. 5). In addition, a dilated
convolution reduces to a regular convolution when d = 1.

B. Model Architecture

Our model exploits the inertial sequence data as inputs to
infer the corresponding integration results, e.g., transforming
an acceleration sequence to speed variance. Fig. 6 shows the
model architecture, taking acceleration data as an example. We
sequentially connect four TCN stacks, a slice layer, and an FC
layer to produce the output.

1) TCN Stack: Each TCN stack consists of three TCN units
and a residual connection (the 1× 1 convolution).
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Fig. 7. Slice and FC layers.

TCN Units: In each TCN unit, we sequentially connect a
weight normalization (WN), a rectified linear unit (ReLU),
and a spatial dropout after each causal dilated convolution.
The WN component is used to normalize the weight matrix
rather than raw data, thus eliminates the dependence on batch
distribution when training sequential data. The spatial dropout
component removes local features at a certain probability, thus
is used for regularization and avoid overfitting during training.

Receptive Field: The TCN model provides a general inertial
sequence learning framework, and its receptive field depends
on three factors: 1) the network depth n; 2) filter size k; and
3) dilation factor d. For example, assume the sampling rate of
accelerations is 50 Hz and the time window for inference is
5 s, thus an acceleration sequence consists of 250 elements.
As shown in Fig. 6, our model consists of four TCN stacks,
with dilation factor di = 2i−1 (i = {1, 2, 3, 4} represents the
stack index). Each TCN stack contains three dilated causal
convolutions (i.e., n = 3) with the same dilation factor. We
set the filter size k = 7, thus our model can involve the first
element in the sequence, i.e.,

1+ (k − 1) ·
4∑

i=1

di · n = 1+ (7− 1) ·
4∑

i=1

2i−1 · 3

= 271 > 250.

Residual Connections: To train such a deep neural network
with 15 layers (12 layers of convolutions and three layers of
FC), we employ a generic residual connection in each TCN
stack. This improves the learning of identity mapping rather
than the entire transformation, which has shown to be effec-
tive in training deep networks. Different from the standard
ResNet [14] which involves the input directly to form the
residual block, causal dilated convolutions have changed the
size between inputs and outputs, thus we cannot compute the
summation as-is. We exploit an additional 1 × 1 convolution
to transform the size of inputs for the elementwise addition
operator.

2) Slice and Fully Connected Layers: As shown in Fig. 7,
the dimension of TCN features after causal dilated convolu-
tions is determined by the length of a sequence and the number
of feature channels (i.e., the size of hidden vectors). We slice
the features and only remain ones of the last timestamp. Then,
we feed this feature vector to three fully connected (FC) layers
to produce the final result.

3) Orientation Inference: We use the angular rate sequence
to infer the vehicle’s rotation and combine with the predicted

velocity to produce the final trajectory. Since the sampling
rate of inertial sensors is always fixed, our orientation infer-
ence model shares the same design with the velocity. However,
since the orientation angle is periodic with a period of 2π , we
use the deviation angle �dt = dt − d0 as inputs for training.

C. Loss Computation

For training, we use the SmoothL1Loss as loss metric, i.e.,

loss =
{

1
n

∑n
i=1 0.5 · (xi − x̂i

)2
,

∣
∣xi − x̂i

∣
∣ ≤ 1

1
n

∑n
i=1

∣
∣xi − x̂i

∣
∣− 0.5,

∣
∣xi − x̂i

∣
∣ > 1

(12)

where x̂ and x are the predicted value and corresponding
ground truth. n denotes the number of all predictions. This
loss metric combines the mean square error (MSE) and the
mean absolute error (MAE), thus smooths the loss value from
outliers.

VI. CUSTOMIZED MODEL TRAINING

With the large-scale database collected via crowdsensing,
we have established a general location inference model to be
used by all users. However, based on our observation, vehicle’s
tracking accuracy differs with the same pretrained model even
on phones with the same type [evaluated in Fig. 17(b)]. This is
due to the inconsistent sensor quality, type of vehicles, driving
habits, or surrounding environments (e.g., temperature). Thus,
training a customized location inference model to fit individual
smartphones is critical to improve the tracking accuracy.

A naive and most straightforward approach is to leverage
transfer learning, i.e., fine-tuning a pretrained model with cus-
tomized small amount of data. However, this incurs several
problems in our application: 1) it is not efficient to train a deep
learning model on mobile-edge devices due to the hardware
resource limitations, thus the training is preferred to be moved
to cloud backend or offline; 2) individual users may not want
to share and upload personal driving data to the backend due
to privacy concerns; and 3) as individual’s driving habits, vehi-
cles, and road conditions may change over time, the existing
model may get stale shortly, thus we need to update the model
actively. Although transfer learning on the local device is pos-
sible, it brings more computation burden on the devices and
we are losing valuable data to improve the common backbone
model.

To deal with the above challenges, we adopt a federated
learning [15] framework and customize it to our application
scenario, which enables mobile phones to collaboratively learn
a shared prediction model while keeping all the training data
on the device. The basic idea is that the individual’s device
downloads the current model from backend, improves it by
learning from data collected on the phone, and then summa-
rizes the changes as a small focused update (Fig. 8). Then,
only the updates to the model instead of data is sent to the
backend, where it is averaged with other users’ updates and
further used to improve the shared global model. To further
secure individual’s privacy, we add white noise into the update
data before uploading to the cloud. By averaging with such
updates from all the users, such white noises are canceled
to a minimum level, while the major update information is
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Fig. 8. Architecture of federated learning.

used for updating the shared global model. This gives us the
following benefits which solve our problem: it only requires
on-device training on very small amount of local data and does
not incur privacy issues. Besides, the local training is based
on shared global model, which makes it more customized to
the individual smartphone while it is getting better generaliza-
tion capabilities. Note that federated learning is just a general
framework, we have to implement all the detailed designs to
fit our problem.

Specifically, our training process contains the following
steps.

Step 1: Every participated vehicle computes training gra-
dients locally with mini batches when GPS data is
available, then the computed gradients instead of
raw data are sent to the server cloud.

Step 2: The server performs secure aggregation by aver-
aging all the weights uploaded from vehicles.

Step 3: The server updates the shared global model with
aggregated gradients and sends back the updated
model to participated vehicles.

Step 4: Each participated vehicle receives the latest shared
model and uses it for prediction and customizes the
local training process.

As the iterations through the above steps evolve, the shared
global model gets better generalization capability without
incurring privacy issues. Note that on-device training is only
scheduled when devices are in charging mode, minimizing
the impact of battery life. Compared to fine-tuning on mobile
devices using transfer learning, the federated learning frame-
work enables the improvement of a shared global model,
which is beneficial for all users. Meanwhile, the active on-
device learning with the latest data enables the customized
model for each individual, provides higher accuracy as the
driving dynamic changes (evaluated in Section VIII-F).

VII. AUXILIARY ATTRIBUTES

In this section, we involve more auxiliary attributes which
can be used to further improve the tracking accuracy.

A. Historical Traffic Speed

Although our TCN model produces vehicle’s locations
in real time, its velocity and position errors are seriously
accumulated during long-time tracking. Thus, we explore an
RNN model to yield historical traffic speed via crowdsens-
ing, so as to calibrate the predicted velocity from unbounded
errors. Especially, our RNN model is trained beforehand via

Fig. 9. Traffic velocity variation during one day.

cloud servers, and used as the preliminary process before
TCN learning, thus it will not impede real-time tracking
performance.

Our intuition comes from the daily and weekly periodicity
on the traffic speed. Fig. 9 depicts traffic velocity variations
on a highway road in Beijing during two weeks. The peak
values on weekdays are much higher than ones on weekends,
and very similar to one day and one week earlier.

Based on the above observation, historical speed
information provides an effective hint to calibrate accu-
mulated errors. However, historical trajectories are always
missing due to the loss of GPS, especially in tunnels.
Thus, we recover such data to produce complete historical
speed features at fine-grained areas. Note that at this stage,
our inputs include historical inertial sequences as well as
anteroposterior GPS trajectories before entering and after
leaving GPS blocked areas.

To simplify the problem, we divide it into two subtasks:
1) velocity recovery and 2) orientation recovery. Below, we
take the velocity recovery as an example. We aim to recover
the missing velocity records by corresponding acceleration
sequences and opportunistic velocity observations, e.g., the
GPS speed before entering and after leaving the tunnel. The
generator fv can be formalized as

v̂0:t = fv(a0:t, v0:t, m0:t) (13)

where v̂ denotes the predicted velocity sequence, a denotes the
complete acceleration sequence, v is the opportunistic velocity
observations from GPS, and m is the corresponding time mask.
For example, mi = 1 when the GPS is available, and vi = mi =
0 otherwise.

Particularly, we adopt a bidirectional long short-term
memory (Bi-LSTM) network model (Fig. 10) to overcome the
vanishing gradient and exploding gradient problems in RNN.
Our bidirectional design captures both forward information
before entering and backward information after leaving GPS
blocked areas, thus eliminates error accumulations. Note that
we add a short cut connection directly from the input veloc-
ity observation (vi and mi), thus our model mainly focuses on
fitting the missing data rather than the observed ones. Finally,
we use an FC network to predict the missing velocity

v̂t = FC
(

vt ◦ mt ◦ −→h t ◦←−h t

)
(14)
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Fig. 10. Bi-LSTM architecture for speed recovery.

where
−→
h t and

←−
h t denote the outputs from forward and

backward LSTM cells, which are formalized as
−→
h t = LSTMCellf

(
at, vt, mt,

−→
h t−1

)

←−
h t = LSTMCellb

(
at, vt, mt,

←−
h t+1

)
. (15)

During training, we compute MSE as the loss metric

loss =
∑

t

(
v̂2

t − v2
t

) · (1− mt)
∑

t(1− mt)
. (16)

B. Recent Speed Trend

Besides historical traffic features, we also predict the next
speed sequence based on recent speed observations, which are
gathered via the last available GPS before losing signal recep-
tions. Different from speed inference by inertial data, we cast
speed trend learning as a sequence generative problem, i.e.,
the joint probability of a speed sequence v1:T is factored as a
product of conditional probabilities

p(v1:T) =
T∏

t=1

p(vt|v1, . . . , vt−1). (17)

Thus, each element vt is produced by only previous samples.
To ensure efficient deployment on smartphones, we explore
a TCN structure for prediction similar to inertial sequence
learning. The only difference is the type and length of the
input sequence, and we continuously concatenate the last 5 s
speed sequences to predict the next value.

C. Social Attributes

We further implement a Web crawler to extract more
social attributes as additional features, including the road
map, weather condition, holiday index, and the day in week
information. Finally, we directly concatenate the inertial infer-
ence with the historical traffic speed one day/week earlier, the
recent speed trend, and the embedded social attributes into an
FC layer.

VIII. EVALUATION

In this section, we evaluate each component of our system
and compare with the state-of-the-art methods. We also
develop a prototype on the smartphone and evaluate its
practical performance in new tunnels.

TABLE I
DATA SET INFORMATION

Fig. 11. Data collection by crowdsensing and a mold for phone pose
estimation. (a) Crowdsensing. (b) Mold with four phones.

A. Methodology

Crowdsourced/Dedicated Data Set: Our large-scale real-
world crowdsourced data set is collected by the DiDi platform
in Beijing and Shanghai, the largest two cities in China with
millions of vehicles. The time period is from December 8,
2019 to January 9, 2020. The traffic data is crowdsourced from
557 phones in Beijing covering 14 326 km distances during
529 h, and from 767 phones in Shanghai covering 18 478 km
distances during 716 h, respectively.

In addition, in order to test our real-time performance in new
tunnels, we develop and install the prototype on three Android
phones (Xiaomi Mi Note, Huawei P9, and Oppo R9m) with
the Tensorflow Mobile interface for model transplantation. We
further collect data over six days in Beijing and Shanghai by
ourselves. The ground truth for evaluation is measured by
a dedicated highly accurate IMU device (XW-GI7660 from
StarNeto company).

Details for our data sets are shown in Table I.
Training Details: When vehicles are driven outdoors, their

GPS locations are recorded as the ground truth to train our
tracking model, which transforms inertial sequences to trajec-
tories. Note that although IMU and GPS are different sensors,
they are both embedded inside commodity smartphones thus
their relative displacement (i.e., the lever arm) is very small.

In the implementation, our TCN and RNN models are both
implemented in PyTorch, and trained for 100 epochs using the
Adam optimizer [16] with learning rate of 3e − 4. The ratio
for training/validation/test split is 6:2:2. We set the TCN batch
size of 32 and dropout of 0.2, and the RNN batch size 256
and dropout of 0.5. The RNN model is trained beforehand
on cloud servers and produces historical traffic speeds one
day/week earlier to calibrate the real-time tracking from TCN.

Evaluation Metrics: We collect over 80 000 tunnel trajec-
tories within one month by DiDi platform among China, and
Fig. 12 depicts their length distribution. In addition, since the
average speed in tunnels is around 16 m/s (nearly 60 km/h),
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Fig. 12. Tunnel length distribution among China, collected by DiDi ride-
hailing platform.

Fig. 13. Pose estimation errors. (a) Four different poses. (b) Three different
vehicles and drivers.

the average and 70-percentile time durations to pass a tun-
nel are 30 and 60 s, respectively. Thus, such durations are
exploited to evaluate the tracking accuracy.

Besides calculating location errors, we also evaluate vehi-
cle’s velocity and orientation errors along the trajectory. Since
we exploit outdoor GPS locations as the ground truth to train
our model, the vehicle’s velocity and orientation are both
defined on 2-D maps, i.e., its horizontal speed on the ground
and its relative rotation along the gravity direction.

Comparison Benchmarks: We compare our performance
with EKF, LSTM, and GRU solutions for vehicle dead reck-
oning. The EKF approach is currently applied by many
ride-hailing platforms to track vehicles in tunnels. The LSTM
is implemented based on IONet [4] which is designed for
pedestrian tracking, and GRU [10] is known to be much faster
than LSTM.

B. Evaluation of Individual Components

1) Pose Estimation: We design a mold to fix four phones
with different poses: horizontal, lean, vertical, and box
[Fig. 11(b)]. The mold is placed flat inside the vehicle. We
measure each pose’s attitude in the mold as the ground truth.

Fig. 13(a) shows the pose estimation errors with different
placements in the mold. We observe that the 90-percentile
error is around 9◦, and the largest error is less than 40◦.
Fig. 13(b) presents the effect of vehicles and drivers. Despite
different drivers and cars, we achieve similar pose estimation
accuracy, also around 9◦ at 90-percentile.

Next, we estimate the probability of the forward and back-
ward directions of the vehicle, p(θ = θ2) and p(θ = θ2). We
calculate the distribution of the estimated probability of the
backward direction, i.e., the estimation error. As shown in
Fig. 14, it achieves more than 99% accuracy at 90 percentile
and a maximum error of 23%.

Fig. 14. Distribution of estimated probability of the backward direction.

Fig. 15. Pose estimation errors with different time windows.

Fig. 16. Velocity inference errors for three phones in (a) Beijing and
(b) Shanghai database, respectively.

Fig. 15 shows the pose estimation accuracy with differ-
ent time windows. We observe that the 90-percentile pose
estimation error is reduced when increasing the time win-
dow. Additionally, the orientation errors stay stable when the
time window is larger than 0.5 s, which reflects the real-time
performance of our system.

2) Acceleration Sequence Learning: We evaluate the veloc-
ity error of our acceleration sequence learning component. We
set the time window as 5 s, i.e., producing current velocity
based on the last 5 s accelerations. The learning rate is set
as 3e − 4. The CDF curves are shown in Fig. 16(a) on the
Beijing database and Fig. 16(b) on the Shanghai database,
respectively. We have evaluated three types of smartphones in
both databases, i.e., Xiaomi Mi Note, Huawei P9, and Oppo
R9m. We find that: 1) our acceleration sequence modeling is
very accurate, with the 80th-percentile error at 0.3–0.5 m/s in
Beijing and 0.2–0.3 m/s in Shanghai, respectively. This yields
accurate vehicle tracking in real time and 2) the Mi Note and
P9 phones have similar accuracy whereas the Oppo phone has
the largest errors in both cases, this indicates that the Oppo
phone is possibly equipped with a less precise accelerometer.

3) Rotation Sequence Learning: Fig. 17(a) depicts the ori-
entation errors for rotation sequence learning with three types
of smartphones in Beijing (similarly in Shanghai). The time
window is set as 60 s, i.e., inferring current orientation based
on the last 60 s gyroscope readings. We observe that vehicle
orientation errors are relatively small, with the 80th-percentile
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Fig. 17. Orientation errors for three types of phones in Beijing, and com-
parison between the same type. (a) Beijing database. (b) Two Mi Note
phones.

Fig. 18. Orientation errors during 60 s. GPS speed direction is the ground
truth. (a) Sample trajectory in Beijing. (b) Sample trajectory in Shanghai.

TABLE II
EVALUATION ON MISSING DATA RECOVERY

error around 3◦ to 5◦. Both the average and maximum errors
of the Oppo phone are the least, which indicates it may be
equipped with a high-quality gyroscope.

We further compare different phones of the same type.
Fig. 17(b) shows the orientation errors for two Mi Note
phones. We find that orientation errors vary significantly even
for the same type of phone, i.e., the 80th-percentile error dif-
fers from 5◦ to 10◦. This is possibly due to the inconsistent
quality of its gyroscope in different environments.

Fig. 18 depicts vehicle orientation errors on two sample
trajectories during 60 s, in Beijing and Shanghai, respectively.
Compared with the ground truth, the accumulated errors of
EKF are extremely large due to noises of the gyroscope, and
our method can reduce long-term orientation errors to a much
smaller value (close to the ground truth).

4) History Recovery: Given anteroposterior GPS speeds
before entering and after leaving the GPS blocked environ-
ments, our Bi-LSTM model learns both the forward and
backward information, thus significantly reduces error accu-
mulations when inferring missing trajectories. Fig. 19(a) and
(b) shows two examples on vehicle velocity and orientation
recovery, respectively. We can observe that the maximum
errors appear at the middle of this sample trajectory, while both
the head and the tail of recovered results match the ground
truth precisely. Table II further depicts the MAE and RMSE for
both velocity recovery and orientation recovery, which shows
much lower errors than speed inference.

5) Speed Trend Modeling: To model recent speed trend, we
set the time window as 5 s, and measure vehicle velocity errors

Fig. 19. Examples on (a) velocity and (b) orientation recovery. The time
window is 1 min.

Fig. 20. Velocity errors for vehicle trend modeling. The time window is 5 s.
(a) Beijing database. (b) Sample trajectory.

Fig. 21. SmoothL1Loss for hyperparameter β.

via only speed trend modeling. As shown in Fig. 20(a), the
80th-percentile velocity errors on three types of smartphones
are 0.5, 0.4, and 0.7 m/s, respectively. Compared with accel-
eration sequence modeling, the above errors are at least 2×
more. The reason is simple: speed trend only uses previous
data and cannot capture current driving actions.

Fig. 20(b) further illustrates long-term tracking effects of
speed trend modeling. Compared with the ground truth, veloc-
ity predictions from speed trend are relatively accurate during
the early period in the tunnel. Then, the vehicle slows down
but the speed trend model still increases the predictions.

6) Hyperparameter: To show the effectiveness of the com-
bination coefficient β, we change it from 0.1 to 1 and calculate
the SmoothL1Loss of our model. The result is shown in
Fig. 21. We find that our model is robust for a wide range
of β, and the least loss is acquired when β = 0.3.

C. Comparison With Others

Table III depicts vehicle’s location errors during 30 and
60 s intervals, in Beijing and Shanghai, respectively. We use
MAE as the localization metric. Compared with EKF, LSTM

Authorized licensed use limited to: Beijing Jiaotong University. Downloaded on September 19,2022 at 06:25:21 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 22. Examples of real-time tracking in new tunnels, with our prototype and the existing EKF solution, respectively. (a) Tunnel in Beijing. (b) Tunnel in
Shanghai.

TABLE III
MAE ON LOCATION INFERENCE (M)

(IONet [4]), and GRU [10], we achieve the least MAE values.
The reason for large errors on LSTM and GRU is that they
drop previous inertial items over a long-term sequence, but
each inertial item is important for location inference.

D. Real Time Performance in New Tunnels

In order to evaluate the real-time performance in new tun-
nels, we have developed a prototype on three phones with
the Tensorflow Mobile interface, and tested our prototype in
new tunnels in Beijing and Shanghai, respectively. The tun-
nels remain consistently unknown to both the EKF solution
and our method, thus vehicles can only employ current iner-
tial data to infer real-time locations when driving in tunnels
(between the entrance and the exit). Ground truth is measured
via a dedicated and highly accurate IMU device (XW-GI7660
from StarNeto company).

Fig. 22 demonstrates our effectiveness for real-time tracking
in new tunnels. Compared with the EKF, our method performs
more accurate trajectories on both distance and orientation.
Fig. 23 further depicts vehicle’s real-time location errors along
the example tunnel trajectory in Beijing, with 18.32 m errors
after 95 s driving.

In addition, we also measure smartphone performances on
Huawei P9, with four tracking models (elaborated in Table IV).
The input data contains 1920 inertial sequences, and each
sequence lasts for 1 min. The storage of our model is 2.25 MB,
slightly larger than the other three but still remains negligible
for smartphones. The average inference time on one sequence
is 7 ms for our model, almost half compared with LSTM and
GRU. The average power for our model is also lower than

Fig. 23. Vehicle tracking with our prototype in a tunnel in Beijing.

TABLE IV
PROTOTYPE PERFORMANCE ON SMARTPHONES

them. Thus, our model is much more efficient than LSTM
and GRU on smartphones.

E. Long Time Tracking

Although majority tunnel trajectories are within less than
2 min (nearly 90-percentile in Fig. 12), we also track a 5-min
trajectory in Beijing to illustrate how our method performs in
extreme long tunnels. As Fig. 24 shows, the maximum loca-
tion error is only 31.7 m for this long trace. Fig. 25 further
depicts its velocity errors during 5 min, and we observe that
the predicted velocity by VeTorch is slightly lower than the
ground truth when driving at a fast speed.

F. Customized Model Training

We evaluate our federated learning-based local customized
model training mechanism by updating the shared model with
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Fig. 24. Tracking vehicles in an extreme long tunnel for 5 min.

Fig. 25. Predicted velocity errors by VeTorch during 5 min.

Fig. 26. Vehicle’s prediction location errors with different amounts of latest
training data.

different amounts of latest data, when both inertial and GPS
signals are available. A pretrained model is used as the base-
line and we use 25, 50, and 75 min data captured during
runtime to actively train the baseline model locally, and eval-
uate the performance with the next 25 min’ data. We evaluate
the location error every 5 s and draw the accumulated errors
in Fig. 26. Without active learning with latest training data,
the 80-percentile error is larger than 25 m and the maxi-
mum error is ∼50 m. With 25 min’ latest data training, the
80-percentile error decreases to 20 m. The error is further
reduced as we use larger time window data (50 and 75 min)
for active training. We choose 50 min as the time window
in our design as it achieves the best balance of accuracy
and local training resource consumption. Note that about 20%
of the error are close to zero, this is because vehicles are
in nonmoving mode (waiting for traffic lights or in parking
mode).

IX. RELATED WORK

A. Intelligent Transportation Systems

Intelligent transportation systems (ITS) improve the effi-
ciency of daily transport and provide innovative services to
traffic management. Among other applications, traffic speed
prediction (TSP) always plays a fundamental role. There are
generally two kinds of method for TSP: 1) the parametric
solutions, e.g., ARIMA [17] which models the traffic in a
stationary process and 2) the nonparametric solutions, e.g.,
SVR [18] and LR [19] which formulate it as a regression
problem. Currently, convolutional neural networks (CNNs)-
based models are used for TSP via large-scale historical traffic
data [20], [21].

Travel time estimation (TTE) is also important to location-
based services for vehicles. Existing TTE efforts can be
classified into two categories: 1) the route-based approaches
and 2) the data-driven approaches. The first [20], [22], [23]
calculates the total travel time as the time summation on
each road segment and intersection. The second [24]–[28]
formulates it as a multivariate time-series prediction problem.

B. Sequential Deep Learning

RNNs are dedicated sequential learning models and have
been widely used in natural language processing [29], machine
translation [30], and speech recognition [31]. LSTM [9] and
GRU [10] can capture temporal dynamics on both local
information and long-term dependency along sequence, thus
become the most popular RNN structures. Attention mecha-
nism [32] is also widely applied to capture the weights of a
sequence.

CNNs have also been used for sequence processing,
especially on sentence classification [33], [34], language
modeling [35], and audio synthesis [12]. Recent work indi-
cates that CNN performs better than RNN when processing
sequences with long-term memory. TCN [11] uses 1-D causal
dilated convolutions over the sequence and obtains wide recep-
tive fields. Some latest work [36], [37] establish a structural
bridge that incorporate techniques from both RNN and CNN.

C. Inertial Tracking and Monitoring

Inertial dead-reckoning techniques have been widely used
for indoor tracking. Pedestrian step counting can be easily
detected via accelerations [38], but stride lengths and head-
ing directions are usually difficult to estimate. Recent research
fuse with other reference signals for periodically calibration
thus mitigate the error accumulation, e.g., UnLoc uses vir-
tual indoor landmarks, MapCraft [39] uses the floor plan,
Hilsenbeck et al. used WiFi fingerprinting [40], and some
use ambient magnetic fields [41], [42]. However, they all rely
on the step counting results which are improper for vehicles.
IONet [4] is the first to abandon step counting and propose a
direct inertial odometry, and MotionTransformer [5] enhances
it by domain-invariant features, but they both aim to track the
pedestrian. VeTrack [43] is designed for vehicle tracking with
low driving speed and plenty of landmarks (e.g., bumps and
turns) which are not common in tunnels.
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Besides inertial tracking, there are many research using
smartphones’ inertial data to monitor dangerous driving behav-
iors (e.g., dangerous driving alert [44] and CarSafe [45]); iden-
tify traffic accidents (e.g., Nericell [46] and WreckWatch [47]);
sense driver phone use (e.g., car speaker [48]); and inspect the
road anomaly or conditions (e.g., Pothole Patrol [49]). The
vehicle’s GPS speed is a critical factor to such applications,
but the signal can be weak or even unavailable in many GPS
blocked environments such as tunnels.

X. CONCLUSION

In this article, we propose VeTorch which tracks a vehi-
cle’s location in real time, with only smartphone’s inertial
data. It opens up the possibility to ubiquitous location-based
services for vehicles in GPS blocked environments. VeTorch
devises a novel inertial sequence learning framework for fast,
secure, and active deployment on phones. Extensive exper-
iments in large-scale real-world data sets from a modern
ride-hailing platform and our prototype have demonstrated the
effectiveness compared with the state of the art.
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