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Abstract—Nowadays, GPS and other global positioning sys-
tems have been widely developed, enabling accurate and con-
venient outdoor location-based services for vehicles. However,
there are still two percents of areas in urban city that cannot
be covered by satellites, e.g., underground parking lots, tunnels,
and multi-level flyovers. Current positioning methods always
rely on inertial dead-reckoning methods, but the performance is
seriously affected by the low-quality inertial sensors embedded in
crowdsourced smartphones. Based on our series of experiments
with thousands of smartphones, we observe that the accuracy
of existing inertial dead-reckoning methods is terribly affected
by many factors, e.g., arbitrary and unknown placements of
smartphones in car, inconstant inertial noises, and the diversity
of smartphones and vehicles. In this paper, we explore a novel
smartphone-based inertial sequence learning approach to infer
vehicle’s location in real time. We also propose a customized
model refinement mechanism for individual drivers. Extensive
experiments on DiDi ride-hailing platform have proved the
effectiveness of our solution.

Index Terms—vehicle tracking, inertial sequence learning,
customised training

I. INTRODUCTION

With the wide development of GPS systems, vehicular

positioning has become very common for outdoor drivers, e.g.,

route planning, real-time navigation, and automatic driving.

Nowadays, anyone can travel in unfamiliar areas without

worrying about getting lost on the map.

However, according to the statistical data, there are still 2%
of the area in urban cities that is not covered by satellites,

including tunnels, underground parking lots, mountainous ar-

eas, etc. Drivers may get confused in such areas and could not

find their way out. For example, drivers may forget where they

park the car in a multi-level and maze-like parking structure.

Positioning without GPS signals is not a new topic. The

current indoor localization methods always rely on WiFi [1],

[2] and other RF signatures [3]–[7], but there are many

shortcomings when used for vehicles [8]. First, the indoor

localization principle is based on signal fingerprints, but there

exists serious instability and susceptibility to indoor inferences

[9]. Second, it is very time-consuming and labor-intensive to

collect and calibrate the RF fingerprints at large scale. Such a

high-cost, low-yield, and unstable positioning approach is not

a long-term solution after all.

In this paper, we aim to enable a smartphone-only and real-

time vehicle tracking solution without GPS or other RF sig-

nals. Instead of adopting the traditional inertial dead-reckoning

for vehicles, we have conducted extensive experiments with

the traffic data from a widely-used ride-hailing platform,

analyzed its challenges and weaknesses, and proposed our

temporal convolutional learning framework. We have also cus-

tomized such model for refinement and inference on individual

smartphones. Specially, our contributions consist of:

• Experience: We present our observations on tracking ve-

hicles with dedicated inertial measurements from smart-

phones. Since the vehicular motion is typically a combi-

nation of rotation and translation movements, we inves-

tigate two motion factors, i.e., the angular rates by gyro-

scope and linear accelerations by accelerometer. We have

summarized three technical challenges based on series

of experiments: 1) the arbitrary and unknown placement

of phones in the car; 2) the multi-factor and inconstant

inertial noises; and 3) the diversity of crowdsourced

smartphones and vehicles.

• Improvements: We explore a coordinate transformation

solution to obtain the motion information of vehicles via

internal smartphone’s inertial readings. We also propose

an inertial sequence learning framework to train and infer

vehicle’s locations and reduce inertial noises. In addition,

we customize our model retraining mechanism which

derives the accurate vehicle trajectory for individual

smartphones.

• Evaluations: We collect a large-scale crwodsourced

dataset from DiDi ride-hailing platform for model train-

ing and testing, in two large cities in China, respectively.

Our results outperform traditional EKF-based tracking

methods and other sequential learning models. In addi-

tion, we retrain our model with individual smartphone’s

inertial data to further improve the customized accuracy.

The experimental results have demonstrated the great

improvements of customized learning compared with the

general inference model.

II. BACKGROUND AND DATA SOURCE

In this section, we introduce application scenarios of city-

level vehicle tracking, and present our date source collected

via crowdsensing.
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Fig. 1. Architecture of traditional inertial dead-reckoning. R is the accelera-
tion projection matrix, and a′ denotes the 2D accelerations on the ground.

A. City-level vehicle tracking

Location-based service (LBS) providers enable accurate

city-level vehicle tracking service by GPS inside smartphones.

Nevertheless, with the rapid development of urban cities,

drivers frequently pass through many GPS blocked environ-

ments, e.g, multi-level overpass, underground parking lots,

tunnel and urban canyons. Such loss of GPS information

seriously affects the experience of vehicular navigation.

To satisfy the location requirements in such environments,

providers mainly focus on strap-down inertial navigation sys-

tems (INS) for vehicle dead-reckoning, via micro-machined

electromechanical systems (MEMS) devices inside smart-

phones. They exploit smartphone’s inertial data as inputs, i.e.,

the 3-axis linear accelerations by accelerometer and the 3-axis

angular rates by gyroscope, both measured at the phone’s coor-

dinate system. Instead of directly double integrating phone’s

accelerations into distance
(
Δxt =

∫ ∫
atdtdt

)
, this method

estimates the vehicular heading Ht and projects the phone’s

accelerations as its forwarding accelerations a′t = Ht ·at, then

the location changes are calculated as Δxt =
∫ ∫

a′tdtdt to

derive the user’s location.

In practice, drivers place the smartphones with arbitrary

postures in the vehicle, thus the phone’s coordinate system

(Xp, Y p, Zp) are not aligned with the vehicle (Xv, Y v, Zv).

Therefore, they always combine the Extended Kalman Filter

(EKF) with INS to estimate the smartphone’s posture in

advance (shown in Figure 1). Specially, the EKF algorithm

constructs the vehicular attitude states and measurement equa-

tions, and leverages the gyroscope to continually updates the

attitude states owing to the measurement observations, thus

deriving the heading direction Ht.

However, due to the low-quality inertial sensors embedded

in commodity smartphones, large drifts and noises appear

frequently and they are easily accumulated to extreme location

errors.

B. Data source

In order to explore the influence of inertial sensors for

crowdsourced vehicle tracking, we have collected millions

of driving trajectories by the DiDi ride-hailing platform.

Our data source can be summarized into two parts, i.e., the

crowdsourced dataset and dedicated dataset. Details are shown

in Table I.

Part 1: Crowdsourced dataset. Our large-scale real-world

crowdsourced dataset is collected by DiDi platform in urban

cities in China between Dec. 1 2020 and Dec. 30 2020. The

training data are gathered via crowdsensing from 876 phones

TABLE I
DATASET INFORMATION

Source Crowdsouced by DiDi Dedicated by ourselves
Location Beijing, Shenzhen and so on Beijing

Time December 1 ∼ 30, 2020 April 1 ∼ May 30, 2021
Distance (17195 + 5591) km 62 km

Smartphones (876 + 829) phones 6 phones
Ground truth GNSS (1Hz) Dedicated INS (100Hz)

(a) Mould with 6 phones (b) Dedicated IMU device

Fig. 2. Dedicated measurement by a mould with six smartphones.

during 308 hours, covering 17195km distances. The test data

are from 829 phones during 191 hours, covering 5591km
distances.

Part 2: Dedicated dataset. Since the crowdsourced data

lacks the ground truth of smartphone’s posture, we build a

mould to hold six smartphones with different placements, as

shown in Figure 2(a). Meanwhile, we leverage a dedicated

IMU device in the same vehicle and collect its measurement

results as the inertial ground truth.

III. OBSERVATION AND CHALLENGES

In this section, we conduct a series of experimental studies

to investigate the inertial impacts on vehicle’s tracking accu-

racy. All observations are based on our dedicated measure-

ments proposed in Table I.

A. Observation of inertial noises

The vehicular motion is typically a combination of rotation

and translation movements. Thus we investigate two motion

factors, i.e., the angular velocities measured by the gyroscope

and linear acceleration measured by the accelerator, both in the

smartphone’s coordinate system. In order to explore the error

caused by inertial noises, we fix the smartphone in vehicle

and align it with the vehicle, thus the smartphone’s inertial

readings are approximated as the vehicle’s.

Gyroscope. Gyroscope measures the real-time angular rates

(wp
X , wp

Y , wp
Z) around the Xp-axis,Y p-axis and Zp-axis in

smartphone coordinate system. Theoretically, with continuous

integration on angular velocities, we can derive the vehicle’s

rotational motion. However, due to the low quality of MEMS’s

gyroscope, its readings are affected by numerous noise, such

as the constant bias, thermo mechanical white noise and flicker

noise [10].

To investigate the impact of gyroscope errors on rotational

motion, we perform continuous integration on angular rates in
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(a) Left turn (b) Drift error in left turn

(c) Right turn (d) Drift error in right turn

Fig. 3. Two GPS trajectory with gyroscope drift errors in 1 minute.

TABLE II
THE SKEWNESS AND KURTOSIS IN DIFFERENT ROADS.

Phones
Left turn Right turn Straight

skew kurt skew kurt skew kurt
#1 1.94 3.96 -2.79 8.04 1.01 7.21
#2 1.96 4.06 -2.81 8.17 1.01 7.23
#3 1.94 3.96 -2.79 8.03 1.01 7.2
#4 1.93 3.89 -2.80 8.06 0.99 7.29
#5 1.96 4.05 -2.81 8.15 1.0 7.09
#6 1.95 3.98 -2.79 8.04 1.01 7.2

straight road segments and turning road segments, respectively.

Straight segments are defined as the angular change less than

10 degrees within one minute and turning segments denote the

ones with more than 45 degrees. The ground truth is measured

by a dedicated IMU device as described in our dedicated

dataset. We compared their angular drift error (the angular

difference between ground truth and integration result) in unit

time.

An interesting finding is that the drift error of left turn and

right turn have the same amplitude but inverse value, as Figure

3 depicts. Based on the skewness and kurtosis value in Table II,

we find that no matter driving on turning road or straight road,

the skewness and kurtosis of drift error are not closed to zero.

In addition, six phones have the same potential manifestation.

All phenomenons demonstrate that the gyroscope’s drift errors

don’t follow the normal distribution.

Accelerometer. Accelerometer measures the 3-axis linear

accelerations (ap
X , ap

Y , ap
Z) in smarpthone’s coordinate system.

The types of accelerator’ drift errors are analogous to gyro-

scope, expect the arising errors due to the double integration

for distance [10].

To investigate the impact of linear acceleration, we extract

the accelerating and decelerating segments with 5-second

intervals in straight roads, and calculate the integrated drift

errors on six phones. The ground truth is also supported by the

dedicated IMU device. Although its skewness and kurtness are

closed to zero (Table III), their corresponding z-sore does not

TABLE III
THE SKEWNESS AND KURTOSIS DURING ACCELERATING AND

DECELERATING.

Velocity
Skewness Kurtosis

skew z-score kurt z-score
Accelerating 0.24 1.49 -0.74 -2.28
Decelerating 0.19 2.0 -0.68 -3.51

satisfy the hypothetical conditions (−1.96 ≤z-score≤ 1.96)
while the inspection level α = 0.05. As a result, the drift

error of accelerometer also disobey the normal distribution .

Inertial sensor with the same type. In order to analyze

the impact of the same inertial sensor in different smartphones,

we collect two smartphones with the same type in the same

vehicle. We leverage a 10s sliding window to process the

temporal sequence and calculate its accumulated errors. As

Figure 4 depicts, the linear acceleration errors on Phone #1
and Phone #2 have an opposite error trend. When acceleration

changes in (0, 1), Phone 1 gets a lower error while Phone 2

obtains more. They also have different maximum orientation

errors when the average angular velocity is 0.3 deg/s. This

experimental result demonstrates that different smartphones

with the same type performs differently in acceleration and

angular rates even in the same vehicle.

B. Challenges and design guidelines

Based on our observations, the challenges of city-level

vehicle tracking are summarized as follows:

1) Arbitrary posture: Drivers have their own preference to

place the smartphone in vehicle, thus the posture of smart-

phone in car is arbitrary and we are ignorant of the relation-

ship between smartphone’s coordinate system and vehicle’s.

Exiting EKF-base heading estimation method is affected by

the low-quality of MEMS sensors in smartphone. To deal

with such a challenge, we propose a PCA-based coordinate

transformation method in section IV C.

2) Inconstant error distribution: The inertial error distri-

butions are seriously varying via crowdsensing. The drift

error of accelerometer or gyroscope don’t follow the normal

distribution, and even the drift distribution of left turns is

not the same as right turns. Thus, we cannot build a general

error distribution model to meet all smartphones. A possible

approach is to leverage the deep learning method such as

RNN for time sequence learning. They capture temporal

dependencies instead of double integration with a general error

distribution. In section IV C, we will introduce the details of

our inertial sequence learning method.

3) The difference of smartphones: Due to the different

commodity inertial sensor, we have realized that different

smartphone proverbially has the difference localization accu-

racy. A straightforward but naive thought is to customize the

inference model for each type of smartphone. However, to our

surprise, two smartphones with the same type still have diverse

localization performance when driving in same vehicle (Figure

4). Thus, model customization for each smartphone is a wise

and brief approach. Detailed introduction is in section IV D.
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(a) Trajectories on the map (b) Linear acceleration errors (c) Angular rate errors

Fig. 4. The velocity and orientation comparison of two smartphones with the same type.

IV. SOLUTIONS

To solve the above three challenges, we propose a novel

customized vehicle inertial tracking architecture. As depicted

in Figure 5, it is comprised of 3 phases: (1) a coordinate

transformation which transforms the smartphone’s inertial data

into vehicle’s; (2) inertial sequence learning which uses histor-

ical data to train location inference model and (3) customized

model retraining which derives the accurate vehicle trajectory

for individual smartphones.

A. Coordinate transformation

Intuitively, the direction of majority accelerations indicates

the vehicle’s forwarding orientation on the horizontal plane

(excluding the gravity). Thus, we explore a three-dimensional

PCA algorithm to extract the direction vector of the largest

acceleration variances, i.e., the first component direction pro-

duced by PCA (shown in Figure 6).

Next, we transfer the acceleration readings from the phone

to the vehicle by establishing a transformation matrix Cv→p.

It is a set of mutually orthogonal three-dimensional coordinate

axes produced by PCA, i.e.,

Cv→p =

⎡
⎣ x1 y1 z1

x2 y2 z2
x3 y3 z3

⎤
⎦ (1)

Then, we convert the inertial readings from mobile phone

to the corresponding vehicle, i.e.,

av = ap(C
v→p)T (2)

B. Inertial Sequence Learning

Since the inertial error is always volatile and inconstant, a

general error distribution model is hard to construct for crowd-

sourced smartphones. Instead of using traditional inertial dead-

reckoning method, we explore an inertial sequence learning

framework to produce a neural network that minimizes the

differences between actual inertial readings and corresponding

location observations.

1) Model formulation: Intuitively, we aim to estimate the

location variance (Δlon0:t,Δlat0:t) during each time interval.

We split the velocity vector into the change of speed and

bearing (Δv0:t,Δo0:t). Specially, the Δo0:t is an intricate

nut to crack, thus we suppose the angular change of bearing

is in (0, 360), and the clockwise change is positive while

the counterclockwise change is negative. Since the turning

angles with more than 180 degrees in a very short duration

is rare, we derive the angular change of bearing Δo0:t =
min{Δo0:t, 2π −Δo0:t}.

2) Inertial sequence input: Based on the DiDi ride-hailing

platform, we collect the raw inertial data from millions of

travelling orders. It consists of the smartphone’s 3-axis ac-

celerations (ap
X , ap

Y , ap
Z), 3-axis angular velocities (wp

X , wp
Y ,

wp
Z), 3-axis gravity accelerations (gpX , gpY , gpZ), GPS location

(longitude and latitude), speed and bearing (lon, lat, v, o). The

sampling frequency of the first three sensors are 50Hz and last

one is 1Hz. Instead of using the raw concatenated 9-dimension

inertial data as model input, it is absolutely a grievous scheme

for a deep learning network to deploy in smartphones, thus

the real-time performance of location inference can not be

promised.
To get rid of the complexity of training and inference, we

extract the most efficient features instead of raw inertial data

to track vehicles. 1) The initial speed feature init speed and

bearing feature init bearing (vehicle’s heading direction) at

initial point (init lon, init lat) in t = 0, i.e., last valid GPS’s

information. 2) The current features consist of accelerometer

features, gyroscope features and gravity features, and we

calculate the corresponding mean,min,max, std, var and

sum at 1-second interval. Therefore, the length of 1-second

inertial sequence is reduced from 3 × 3 × 50 = 450 to

3× 3× 6 = 54, and the memory of train set is only about 1/5

of the original.
3) TCN Architecture: We use a TCN (Temporal Convolu-

tional Network) architecture with residual blocks to learn the

inertial sequence. Although recurrent neural networks (e.g.,

LSTM (Long Short-Term Memory) and GRU (Gated Recur-

rent Unit)) have become the most popular architectures for

sequence modeling, they are inefficient on mobile devices due

to the large number of parameters. Instead, we adopt the TCN

which is more suitable for deployment on smartphones with

a long-range receptive field. Specifically, residual blocks used

in TCN architecture have been proved to be an effective way

to train deep networks, which enables networks to transmit

information in a cross-layer manner.
As shown in Figure 7, the hyper-parameter settings of our

network are: 9 fully connected layers and 3 TCN residual
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Fig. 5. System overview.

Fig. 6. 3D Principal Component Analysis. The red arrow denotes the direction
of majority accelerations, i.e., vehicle’s heading direction.

blocks (batch size of 128 and the learning rate of 0.001).

We use the ReLU activation function in each TCN residual

block, whereas the Leaky-ReLU is used for the first six layers

of FC network. In each TCN residual block, we apply the

dropout rate of 0.5 to mitigate overfitting. Meanwhile, we use

the weight normalization and batch normalization to accelerate

model convergence, and the Adam optimizer to iteratively

update network weights.

4) Loss Computation: Since our learning objective com-

bines both velocity and orientation estimates, we use the

weighted SmoothL1Loss as our loss metric, which is less sen-

sitive to outliers than the MSE (Mean Squared Error) and pre-

vents exploding gradients in some cases. The SmoothL1Loss
is a popular metric to calculate the loss value, i.e.,

L (x̂, x) =

{ |x̂− x| − 0.5 |x̂− x| > 1,
0.5 |x̂− x|2 |x̂− x| ≤ 1. (3)

C. Customized Training

With the large-scale database collected via crowdsensing,

we have established a general location inference model by

all users. However, based on our observation in Section III,

vehicle’s tracking accuracy differs a lot with the same tracking

method, even on the same smartphone as Figure 4 shows. A

straightforward approach is to customize the location inference

model to fit individual smartphones. Though appealing, it

has two inherent limits. First, people upload their location

information and it will lead to privacy concerns. Besides,

personalized learning per user will cost dozens of minutes

on smartphones. Thus, on-cloud personalization is not realistic

for location service providers to confirm real-time and iterative

vehicular tracking.

To address the preceding issues, we propose our customized

model training mechanism as depicted in Figure 9. Its training

TABLE IV
THE DIFFERENT WAYS TO TRAIN PERSONALIZATION MODELS.

Period Models Has PCA Training set Testing set

Offline

general model × � �
model #2 × � + � �
model #3

√
� + � �

Online
model #3

√
� + � �

model #4
√

� + � + � �

process comprises three phases:

1) Cloud training: First, we use the crowdsensing dataset

to train a general location inference model. This phase is typ-

ically performed on the cloud. The trained model is called as

a general model. After achieving great inference performance

on the crowdsourced dataset, we dispatch the general model

to all users’ devices.

2) Offline training: On each mobile device, we leverage its

private dataset and retrain the general model. The personal-

ization is mainly achieved by synthesizing the dataset which

user refuse to upload. Finally, we deploy the personal model

on individual smartphones.

3) Online training: During vehicle’s outdoor driving, each

smartphone collects the latest inertial data with reliable GPS.

We use them to training data in real time and continuously

reinforce our personal model.

Given this customized training mechanism, we derive a

better individual tracking model without incurring privacy

issues. Note that offline training and online training are both

scheduled when devices are in charging mode, minimizing the

impact of battery life.

V. EVALUATION

A. Methodology

Training and testing datasets. The detailed dataset is

shown in Table I. As a supplement, training dataset is at

the sample length of 10 seconds, while testing dataset is

60 seconds. To distinguish crowdsourced dataset and private

dataset, we name the crowdsourced dataset as �, the private

historical data in April as �, and the private online data in

May as � (shown in Figure 10), where � and � come from

the dedicated dataset with six smartphones. We regard the data

in April as historical input for offline training, and treat the

private data in May as the latest trajectory for online training.

Detailed descriptions about private model training are shown

in Table IV.
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Fig. 7. TCN framework for vehicle tracking.

Fig. 8. The details of a TCN residual block

Fig. 9. Mechanism of customized training.

Compared Alternatives. We compare our performance

with EKF, LSTM, and GRU solutions for vehicle tracking.

The EKF approach is currently applied by many ride-hailing

platforms to track vehicles without GPS. The LSTM and GRU

are implemented by replacing the TCN block with LSTM

(torch.nn.LSTM ) and GRU (torch.nn.GRU ). Their special

network parameters: hidden size=256 and hidden layer=3.

Fig. 10. Multi-stage dataset for model tranining.

TABLE V
MAE ON LOCATION INFERENCE (M)

Models
30-second tracking 60-second tracking

Beijing Shenzhen Beijing Shenzhen
EKF 74.77 72.54 165.53 163.95
GRU 33.16 29.00 94.33 84.68

LSTM 25.36 23.23 74.51 69.52
TCN 23.64 21.17 71.19 66.23

B. Inertial Sequence Learning

Table V depicts vehicle’s location errors during 30-second

and 60-second intervals. We use the MAE (Mean Absolute

Error) calculated by ground truth and our predictions as

the loss metric. Compared with EKF, GRU and LSTM, we

observe that TCN achieves the least MAE values, both in

short and long terms. Besides, our TCN-based inference model

only has 1/3 parameters of GRU and LSTM, which is more

suitable for running on smartphones. Figure 11 demonstrates

the TCN’s effectiveness in an overpass in Beijing and a tunnel

in Shenzhen for real time tracking without GPS.

C. Accuracy of Personalized Model

We first evaluate the accuracy of the personal model during

offline training. Then we leverage online data collected during

vehicle driving and evaluate the accuracy improved by online

training.

1) Effectiveness of Pose Estimation and Offline Training:
We comprehensively compare the model performance between

offline training model and other alternatives, based on two

guidelines: (1) transforming coordinate with PCA-based pose

estimation; (2) training personal model with offline private
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(a) An overpass in Beijing (b) A tunnel in Shenzhen

Fig. 11. Examples of real time tracking, with our prototype and ground truth.

Fig. 12. Offline comparison.

Fig. 13. Online comparison.

data in April or not. Finally, we have 4 alternatives for

comparison, as shown in Table IV.

Figure 12 denotes the substantial improvement contributed

by offline training. When we only leverage the offline data

to retrain the general model (offline model #2), it can also

reduce localization results of 10s inference from general’s

13.114m into 11.437m (↓ 12.79%). If we combine the PCA’s

result and personalized retrain (offline model #3), it shows the

reduction of errors into 8.0m (↓ 38.99%). This experimental

result demonstrates that the combination of leveraging PCA-

based transformation and offline private data training is the

wise solution.
2) Effectiveness of Online Training: Offline training ob-

tains a respectable precision offline model (offline model #3 ),

i.e.,training and testing the model using the historical data in

April as input. On contrary, online training updates the model

by leveraging the latest trajectory of such driver as input data.

Figure 13 shows the improvement. Compared to the inference

result of offline training, the online training (online model #4 )

improves localization error again from offline model’s 7.802m

to 6.818m (↓ 12.61%). Although our inference model has been

well personalized by offline training with historical data, it still

have a improvement by the online data. This result inspires that

we can continuously integrate the latest inertial data as training

sets and update our inference model to reduce the localization

error.

VI. RELATED WORK

A. Sequential Deep Learning
RNN is a classic way to model the sequence data. It is

widely used in natural language processing [11], speech recog-

nition [12], machine translation [13], stream data processing

[14], [15], and traffic prediction [16]. LSTM [17] is a special

RNN. It controls the transmission state through gates, which

improves the effect on the long-term memory. GRU [18], a

variant of LSTM, combines the forget gate and the input gate

into a single update gate, and its model is simpler than the

LSTM. Recently, CNN has achieved breakthroughs in learning

sequence, with better performance than RNN in learning long-

term sequences. As an unique CNN, the temporal convolu-

tional network (TCN [19]) realizes the causal transmission

of data by means of causal convolutions and expands the

receptive field by dilated convolutions. Compared with RNN,

it is more flexible and smaller for mobile devices.

B. Localization in GPS-blocked Environment
At present, location tracking is usually based on GPS.

However, when driving into long tunnels and indoor scenes,

215

 



the GPS signal is in a low intensity and can not provide

accurate locations. The positioning errors will accumulate to

extreme values. Ultrasonic wave [20], WiFi [21], Bluetooth

[22] technologies are mainly used for indoor localization.

However, these solutions highly depend on dedicated deploy-

ments in the environment. Users also need to carry special

devices for sensing the environment, which constraints the

wide deployment of indoor location based services.

C. Inertial Tracking

Inertial dead reckoning has been widely used for indoor

tracking, e.g., step counting. Mapcraft [23] used floor plan

to reduce the error of stride length and heading direction.

Hilsen Beck et al. leveraged WiFi fingerprints [24] to improve

the location accuracy. However, these studies aimed to track

pedestrians instead of vehicles. Gao et al. proposed VeTrack

[25] to track vehicles at low speeds in GPS-blocked parking

lots. It required a large number of landmarks (such as bumps

and turns) to calibrate the location, which is not appropriate

for large-scale tracking. Since the phone’s coordinate system

is not always aligned with the vehicle, the inertial readings

of smartphone cannot be directly used to infer vehicle’s loca-

tion. Building a posture relationship between smartphone and

vehicle is necessary. Y. Awang [26] leveraged the embedded

sensors to predict the smartphone’s posture in car. R. Gao [25]

compared of the shadow tracking method and 3D tracking

method.

VII. CONCLUSION

In this paper, we conduct extensive experiments on crowd-

sourced traffic datasets to explore the key factors on vehicular

inertial tracking. We summarize three technical challenges

and propose a novel vehicle real time tracking solution. It

consists of PCA-based coordinate transformation algorithm,

TCN-based inertial sequence learning model, and customized

re-training mechanism. The experimental results show that our

approach can obviously improve the accuracy and robustness

of vehicle tracking without GPS.
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